タグ「交点」の検索結果

118ページ目:全1364問中1171問~1180問を表示)
北海道薬科大学 私立 北海道薬科大学 2011年 第4問
$2$つの放物線
\[ C_1:y=x^2-6x+12,\quad C_2:y=x^2+6x+8 \]
の頂点同士を結ぶ直線を$\ell$とする.

(1)$C_1$の頂点の座標は$([ア],\ [イ])$であり,$C_2$の頂点の座標は$(-[ウ],\ -[エ])$である.
(2)$\ell$の方程式は$\displaystyle y=\frac{[オ]}{[カ]}x+[キ]$となる.
(3)$C_1$と$\ell$との交点の$x$座標は$[ク]$,$\displaystyle \frac{[ケコ]}{[サ]}$,$C_2$と$\ell$との交点の$x$座標は$-[シ]$,$\displaystyle -\frac{[ス]}{[セ]}$である.$C_1$と$\ell$とで囲まれた部分の面積と,$C_2$と$\ell$とで囲まれた部分の面積との和は$\displaystyle \frac{[ソ]}{[タチ]}$となる.
東北工業大学 私立 東北工業大学 2011年 第2問
三角形$\mathrm{ABC}$があり,各辺の長さは$\mathrm{BC}=2 \sqrt{13}$,$\mathrm{CA}=2 \sqrt{10}$,$\mathrm{AB}=2 \sqrt{5}$である.このとき,

(1)$\displaystyle \cos A=\frac{\sqrt{[ ]}}{10}$である.
(2)三角形$\mathrm{ABC}$の面積は$[ ]$である.
(3)頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線を引き,この垂線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.$\angle \mathrm{BAD}=\theta$とすれば,$\displaystyle \sin \theta=\frac{[ ] \sqrt{65}}{65}$である.
(4)辺$\mathrm{BC}$の中点を$\mathrm{E}$とすれば,線分$\mathrm{AE}$の長さは$\sqrt{[ ]}$である.
(5)$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,線分$\mathrm{CF}$の長さは$4 \sqrt{13}-2 \sqrt{[ ]}$である.
東北工業大学 私立 東北工業大学 2011年 第4問
$2$つの放物線$y=x^2-4x+2$と$y=-x^2+6x-6$がある.

(1)これらの放物線の交点の座標は$([ ],\ -1)$と$([ ],\ [ ])$である.
(2)これらの放物線によって囲まれた図形の面積$S_1$は$S_1=[ ]$である.
(3)$x \geqq 0$の範囲で,これらの放物線と$y$軸によって囲まれた図形の面積$S_2$は$\displaystyle S_2=\frac{[ ]}{3}$である.
獨協大学 私立 獨協大学 2011年 第3問
$2$つの放物線$y=-x^2+2x+3$,$y=x^2-1$について,以下の問題に答えよ.

(1)$2$つの放物線を座標平面上に図示し,交点の座標を求めよ.
(2)$2$つの放物線に囲まれた部分の面積を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2011年 第4問
関数$\displaystyle f(x)=2 \log \frac{2+\sqrt{4-x^2}}{x}-\sqrt{4-x^2}$を考える.ただし,対数は自然対数である.以下の問いに答えなさい.

(1)関数$f(x)$の定義域は$0<x \leqq a$である.$a$の値を求めなさい.
(2)曲線$y=f(x)$の概形をかきなさい.なお,$y$の増減およびグラフの凹凸を調べた過程も記載しなさい.
(3)$0<x_0<a$とし,上問$(2)$の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(x_0,\ y_0)$における$C$の接線と$y$軸との交点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$の長さを求めなさい.ただし,$a$は上問$(1)$で求めた値とする.
福岡大学 私立 福岡大学 2011年 第2問
次の$[ ]$をうめよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{AC}$を$3:2$に内分する点を$\mathrm{N}$,線分$\mathrm{BN}$と$\mathrm{CM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと,$\overrightarrow{\mathrm{AP}}=[ ]$となる.さらに,$\mathrm{AB}=9$,$\mathrm{AC}=6$,$\mathrm{AP}=4$のとき,$\overrightarrow{b}$と$\overrightarrow{c}$の内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値は$[ ]$である.
(2)点$(2,\ -3)$を点$(1,\ -1)$に移し,点$(-1,\ 4)$を点$(7,\ -2)$に移す$1$次変換$f$を表す行列$A$を求めると,$A=[ ]$である.また,原点を中心として一定の角だけ回転する回転移動$g$が点$(3,\ 3)$を点$(1+2 \sqrt{2},\ 1-2 \sqrt{2})$に移すとき,$g$を表す行列$B$を求めると,$B=[ ]$である.
(3)数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$a_2=1$,$a_{n+2}=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定めるとき,$a_7,\ a_8$の値を求めると,$(a_7,\ a_8)=[ ]$である.また,$\displaystyle \sum_{k=1}^\infty \frac{a_k}{2^k}$の値は$[ ]$である.
京都薬科大学 私立 京都薬科大学 2011年 第3問
次の$[ ]$にあてはまる数または式を記入せよ.

$t>0$とする.放物線$y=x^2$上の点$\mathrm{P}(t,\ t^2)$における接線$\ell_1$と$x$軸との交点$\mathrm{A}$の$x$座標は$[ ]$である.原点$\mathrm{O}$および$2$点$\mathrm{P}$,$\mathrm{A}$を通る放物線の方程式は$y=[ ]x^2-[ ]x$であり,この放物線の原点における接線$\ell_2$の方程式は$y=-[ ]x$である.$2$直線$\ell_1$,$\ell_2$の交点の座標は$([ ],\ -[ ])$であり,放物線$y=x^2$と$2$直線$\ell_1$,$\ell_2$で囲まれた図形の面積は$[$*$]$である.
点$\mathrm{P}$を通り,$\ell_1$に垂直な直線$\ell_3$の方程式は$y=-[ ]x+[ ]$であり,$\ell_3$と$y$軸および曲線$y=x^2 (x \geqq 0)$で囲まれた図形の面積は$[$**$]$である.そして,$[$**$]:[$*$]=6:1$となるのは,$t=[ ]$のときである.
京都薬科大学 私立 京都薬科大学 2011年 第4問
四面体$\mathrm{OABC}$について,次の$[ ]$にあてはまる正の数を記入せよ.ただし,$[ア]:[イ]$,$[ウ]:[エ]$および$[オ]:[カ]$については,もっとも簡単な整数比で表すこと.

(1)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$,線分$\mathrm{OG}$を$3:2$に内分する点を$\mathrm{D}$,直線$\mathrm{BD}$と平面$\mathrm{AOC}$の交点を$\mathrm{E}$,直線$\mathrm{OE}$と直線$\mathrm{AC}$との交点を$\mathrm{F}$とする.このとき,
\[ \overrightarrow{\mathrm{OG}}=[ ] \overrightarrow{\mathrm{OA}}+[ ] \overrightarrow{\mathrm{OB}}+[ ] \overrightarrow{\mathrm{OC}} \]
となり,
\[ \overrightarrow{\mathrm{BD}}=[ ] \overrightarrow{\mathrm{OA}}-[ ] \overrightarrow{\mathrm{OB}}+[ ] \overrightarrow{\mathrm{OC}} \]
となる.また,$\mathrm{OE}:\mathrm{EF}=[ア]:[イ]$,$\mathrm{BD}:\mathrm{DE}=[ウ]:[エ]$であり,二つの四面体$\mathrm{ABFO}$と$\mathrm{CEFB}$の体積比は$[オ]:[カ]$である.
(2)$\angle \mathrm{COB}={30}^\circ$,$\angle \mathrm{AOC}={45}^\circ$,$\angle \mathrm{CAO}={60}^\circ$,$\mathrm{OA}=\sqrt{3}+1$,$\mathrm{BC}=\sqrt{2}$とすると,$\mathrm{OC}=[ ]$,$\mathrm{CA}=[ ]$であり,$\mathrm{OB}$は$[$*$]$または$[$**$]$である.ただし,$[$*$]>[$**$]$とする.
青山学院大学 私立 青山学院大学 2011年 第5問
曲線$y=e^{-x}$上の点$(1,\ e^{-1})$における接線と$x$軸の交点を$(a_1,\ 0)$とする.次に,$y=e^{-x}$上の点$(a_1,\ e^{-a_1})$における接線と$x$軸の交点を$(a_2,\ 0)$とする.以下,同様に$a_n (n=3,\ 4,\ 5,\ \cdots)$を定める.次の問に答えよ.

(1)$a_1$を求めよ.
(2)$a_n$を求めよ.
(3)曲線上の点$(a_n,\ e^{-a_n})$における接線と,直線$x=a_n$および$x$軸で囲まれた三角形の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
青山学院大学 私立 青山学院大学 2011年 第2問
四面体$\mathrm{OABC}$を考える.また$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.次の問に答えよ.

(1)線分$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{D}$とする.このとき$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表すと
\[ \overrightarrow{\mathrm{OD}}=\frac{[ ]}{[ ]} \overrightarrow{a}+\frac{[ ]}{[ ]} \overrightarrow{b} \]
である.
(2)線分$\mathrm{BC}$を$1:3$に内分する点を$\mathrm{E}$とし,直線$\mathrm{CD}$と$\mathrm{AE}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと
\[ \overrightarrow{\mathrm{OP}}=\frac{1}{[ ]} ([ ] \overrightarrow{a}+[ ] \overrightarrow{b}+[ ] \overrightarrow{c}) \]
である.
(3)四面体$\mathrm{OAPC}$の体積は,四面体$\mathrm{OABC}$の体積の$\displaystyle \frac{[ ]}{[ ]}$倍である.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。