タグ「交点」の検索結果

115ページ目:全1364問中1141問~1150問を表示)
自治医科大学 私立 自治医科大学 2011年 第14問
円$x^2+y^2+4x-6y-12=0$と$x$軸との交点を$\mathrm{A}$,$\mathrm{B}$とし,$y$軸との交点を$\mathrm{C}$,$\mathrm{D}$とする.線分$\mathrm{AB}$の長さを$a$,線分$\mathrm{CD}$の長さを$b$とするとき,$\displaystyle \frac{b^2-a^2}{10}$の値を求めよ.
北海学園大学 私立 北海学園大学 2011年 第4問
点$\mathrm{P}$を直線$\ell_1:y=x$上の点とし,$2$点$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ$(-1,\ 0)$,$(0,\ 1)$とする.$\mathrm{P}$を通り$\ell_1$に直交する直線を$\ell_2$とする.また,$\ell_2$と$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線との交点を$\mathrm{Q}$とする.$\mathrm{P}$の$x$座標を$a$とするとき,次の問いに答えよ.ただし,$\displaystyle 0<a<\frac{1}{2}$とする.

(1)$\ell_2$の方程式を$a$を用いて表せ.
(2)$\mathrm{Q}$の座標を$a$を用いて表せ.
(3)$\mathrm{Q}$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{R}$とする.四角形$\mathrm{OPQR}$を$x$軸の周りに$1$回転してできる回転体の体積$V$を$a$を用いて表せ.
自治医科大学 私立 自治医科大学 2011年 第17問
$2$つの円$C_1:x^2+y^2-24x-10y+44=0$,$C_2:x^2+y^2-4x+10y+4=0$について考える.$C_1$と$C_2$の相異なる$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の長さを$L$としたとき,$\displaystyle \frac{L^2}{10}$の値を求めよ.
北海学園大学 私立 北海学園大学 2011年 第3問
傾き$m$の直線$\ell_1$が放物線$y=x^2$に点$\mathrm{A}$で接している.また,直線$\ell_2$は点$\mathrm{B}$で$y=x^2$に接し,$\ell_1$に直交している.ただし,$m$は正の実数である.

(1)点$\mathrm{B}$の座標を$m$を用いて表せ.また,$\ell_2$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_2$の交点はある直線上の点である.その直線の方程式を求めよ.
(3)$2$点$\mathrm{A}$,$\mathrm{B}$を結ぶ直線と$y=x^2$で囲まれた部分の面積を求めよ.
北海学園大学 私立 北海学園大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{5}{x^2-x-6}-\frac{4}{x-3}$を簡単にせよ.

(2)$\displaystyle -3 \leqq x \leqq \frac{1}{2}$のとき,関数$f(x)=-x^2-2x+9$の最大値と最小値を求めよ.

(3)$3$直線$\ell_1:5x+y-23=0$,$\ell_2:3x-y-1=0$,$\ell_3:x-3y+5=0$があり,$\ell_1$と$\ell_2$,$\ell_2$と$\ell_3$,$\ell_3$と$\ell_1$の交点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とするとき,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標と$\cos \angle \mathrm{ABC}$の値を求めよ.
東北学院大学 私立 東北学院大学 2011年 第6問
平行四辺形$\mathrm{OABC}$において,$\mathrm{OA}=3$,$\mathrm{OC}=2$とし,辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{L}$,辺$\mathrm{AB}$の中点を$\mathrm{M}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{N}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{LN}}$を$\overrightarrow{a}$,$\overrightarrow{c}$で表せ.
(2)線分$\mathrm{OM}$と$\mathrm{LN}$の交点を$\mathrm{P}$とするとき,$\mathrm{OP}:\mathrm{PM}$を求めよ.
(3)線分$\mathrm{OM}$と$\mathrm{LN}$が垂直であるとき,線分$\mathrm{LN}$の長さを求めよ.
明治大学 私立 明治大学 2011年 第4問
平行四辺形$\mathrm{ABCD}$を考える.辺$\mathrm{AB}$と辺$\mathrm{AD}$の長さは,それぞれ$3,\ 4$で,$\angle \mathrm{ABC}$は$60^\circ$であるとする.辺$\mathrm{AD}$と辺$\mathrm{BC}$の中点をそれぞれ,$\mathrm{M}$,$\mathrm{N}$とおく.また,線分$\mathrm{AN}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,線分$\mathrm{CM}$と線分$\mathrm{BD}$の交点を$\mathrm{Q}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{BC}}$とおく.以下の問に答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{[ヘ]}{[ホ]} \overrightarrow{a}+\frac{[マ]}{[ミ]} \overrightarrow{b}$と表せる.また,$\displaystyle \mathrm{AP}=\frac{[ム] \sqrt{[メ]}}{[モ]}$となる.

(2)$\displaystyle \cos (\angle \mathrm{PAQ})=\frac{[ヤユ] \sqrt{[ヨ]}}{[ラリ]}$となる.
(3)三角形$\mathrm{ABP}$の外接円の半径は$\displaystyle \frac{\sqrt{[ルレロ]}}{[ワヲ]}$である.
(4)三角形$\mathrm{ABP}$の外心を$\mathrm{O}$とおくとき,$\overrightarrow{\mathrm{AO}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表しなさい.
明治大学 私立 明治大学 2011年 第3問
次の空欄$[ア]$から$[オ]$に当てはまるものをそれぞれ入れよ.

関数$f(t)$は$\displaystyle 0<t<\frac{\pi}{2}$において微分可能で$f(t)>0$かつ$f^\prime(t)>0$をみたすとする.また$\displaystyle f \left( \frac{\pi}{3} \right)=2$とする.
媒介変数表示$\displaystyle \left\{ \begin{array}{l}
x=f(t) \cos t \\
y=f(t) \sin t
\end{array} \right. \left( 0<t<\frac{\pi}{2} \right)$により定まる曲線を$C$とする.$C$上の点$\mathrm{P}(f(t) \cos t,\ f(t) \sin t)$における接線と$x$軸との交点を$\mathrm{A}(a(t),\ 0)$とすれば
\[ a(t)=\frac{(f(t))^2}{f^\prime(t) [ア]+f(t) [イ]} \]
となる.$\mathrm{O}$を原点とするとき,すべての$t$に対し$\mathrm{OP}=\mathrm{OA}$であれば$f$は
\[ f^\prime(t) [ア]+f(t) [ウ]=0 \]
をみたす.この式の両辺に$\cos t+1$をかけて整理すると
\[ \frac{d}{dt} \left( f(t) [エ] \right)=0 \]
となり,
\[ f(t)=[オ] [エ]^{-1} \]
が得られる.
南山大学 私立 南山大学 2011年 第2問
点$\mathrm{A}(1,\ 0)$を通る傾き$k$の直線を$\ell$とする.$\ell$と放物線$C:y=-x^2-2x+4$の$2$つの交点を$\mathrm{P}(\alpha,\ -\alpha^2-2 \alpha+4)$,$\mathrm{Q}(\beta,\ -\beta^2-2 \beta+4)$とする.ただし,$\alpha<\beta$である.

(1)$\beta-\alpha$を$k$を用いて表せ.
(2)$\beta-\alpha$が最小となるときの$k$の値を求めよ.
(3)$(2)$のとき,$\ell$と$C$で囲まれた図形の面積を求めよ.
(4)$(2)$のとき,$C$上を$\mathrm{P}$から$\mathrm{Q}$まで動く点を$\mathrm{R}$とする.線分$\mathrm{AR}$の中点$\mathrm{M}$の軌跡を求めよ.
名城大学 私立 名城大学 2011年 第2問
放物線$C_1$を$y=(x+1)^2+1$とする.$C_1$を$y$軸に関して対称移動した放物線を$C_2$とし,$C_1$を$x$軸に関して対称移動した放物線を$C_3$とする.次の各問に答えよ.

(1)$C_2$の方程式と$C_1$,$C_2$の交点$\mathrm{P}$の座標を求めよ.
(2)$C_3$を平行移動して得られる曲線で,頂点が$\mathrm{P}$となる放物線を$C_4$とする.$C_4$の方程式を求めよ.
(3)$3$つの放物線$C_1$,$C_2$,$C_4$によって囲まれる部分の面積を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。