タグ「交点」の検索結果

112ページ目:全1364問中1111問~1120問を表示)
鹿児島大学 国立 鹿児島大学 2011年 第6問
曲線$C$は極方程式$r=2 \cos \theta$で定義されているとする.このとき,次の各問いに答えよ.

(1)曲線$C$を直交座標$(x,\ y)$に関する方程式で表し,さらに図示せよ.
(2)点$(-1,\ 0)$を通る傾き$k$の直線を考える.この直線が曲線$C$と$2$点で交わるような$k$の値の範囲を求めよ.
(3)(2)のもとで,$2$交点の中点の軌跡を求めよ.
旭川医科大学 国立 旭川医科大学 2011年 第3問
曲線$y=e^{ax+b} \ (a \geqq 1)$と曲線$y=e^{-x}$が一点で交わり,交点におけるそれぞれの接線が垂直に交わっているとする.次の問いに答えよ.

(1)交点の座標を$(x(a),\ y(a))$とおくとき,$b,\ x(a),\ y(a)$をそれぞれ$a$を用いて表せ.
(2)曲線$y=e^{ax+b} \ (a \geqq 1)$を$C(a)$で表す.曲線$C(a)$と曲線$C(a+1)$の交点の$x$座標を$X(a)$とおくとき,
\[ \lim_{a \to \infty}(X(a)-x(a)) \]
を求めよ.
(3)$X(a)-x(a)$は$a \geqq 1$のとき単調減少であることを示せ.
長岡技術科学大学 国立 長岡技術科学大学 2011年 第3問
曲線$C:y=e^{2x}$上の点$\mathrm{P}(t,\ e^{2t})$における接線$\ell$と$x$軸との交点を$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)$\mathrm{Q}$が$x$軸の正の部分にあるような$t$の範囲を求めなさい.
(2)$t$が前問の範囲にあるとき,$C$および$3$直線$\ell,\ y=0,\ x=0$で囲まれる部分の面積$S(t)$を求めなさい.
京都教育大学 国立 京都教育大学 2011年 第5問
放物線$C:y=-x^2+1$上の異なる$2$点$\mathrm{A}(a,\ -a^2+1)$,$\mathrm{B}(b,\ -b^2+1)$におけるそれぞれの接線$\ell,\ m$が直交するとする.次の問に答えよ.

(1)任意の実数$r$に対して
\[ \alpha+\beta=r,\quad \alpha\beta=-\frac{1}{4} \]
をみたす実数$\alpha,\ \beta$が存在することを示せ.
(2)$\mathrm{A}$と$\mathrm{B}$が上の条件をみたしながら動くとき,直線$\mathrm{AB}$が$\mathrm{A}$と$\mathrm{B}$の取り方によらず常に通る点の座標を求めよ.
(3)$\ell$と$m$の交点の軌跡を求めよ.
福井大学 国立 福井大学 2011年 第3問
楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \ (a>b>0)$上に2点$\mathrm{P}(0,\ -b)$,$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$をとる.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$である.$\mathrm{Q}$における$C$の接線を$\ell$とし,$\mathrm{P}$を通り$\ell$に平行な直線と$C$との交点のうち$\mathrm{P}$と異なるものを$\mathrm{R}$とおく.このとき以下の問いに答えよ.

(1)$\mathrm{R}$の座標を求めよ.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,$\triangle \mathrm{PQR}$の面積の最大値とそのときの$\mathrm{Q}$の座標を求めよ.
(3)$C$の焦点のうち$x$座標が正のものを$\mathrm{F}$とする.(2)で求めた$\mathrm{Q}$の$x$座標と$\mathrm{F}$の$x$座標の大小を比較せよ.
熊本大学 国立 熊本大学 2011年 第3問
楕円$C:x^2+4y^2=4$と点$\mathrm{P}(2,\ 0)$を考える.以下の問いに答えよ.

(1)直線$y=x+b$が楕円$C$と異なる2つの交点をもつような$b$の値の範囲を求めよ.
(2)(1)における2つの交点を$\mathrm{A},\ \mathrm{B}$とするとき,三角形$\mathrm{PAB}$の面積が最大となるような$b$の値を求めよ.
熊本大学 国立 熊本大学 2011年 第4問
楕円$C:x^2+4y^2=1$と点$\mathrm{P}(2,\ 0)$を考える.以下の問いに答えよ.

(1)直線$y=x+b$が楕円$C$と異なる2つの交点をもつような$b$の値の範囲を求めよ.
(2)(1)における2つの交点を$\mathrm{A}$,$\mathrm{B}$とするとき,三角形$\mathrm{PAB}$の面積が最大となるような$b$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2011年 第1問
四面体$\mathrm{OABC}$と点$\mathrm{P}$について,
\[ 6 \overrightarrow{\mathrm{OP}}+3 \overrightarrow{\mathrm{AP}}+2 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]
が成り立っている.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)3点$\mathrm{A},\ \mathrm{B},\ \mathrm{C}$を通る平面と直線$\mathrm{OP}$との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)直線$\mathrm{AQ}$と辺$\mathrm{BC}$との交点を$\mathrm{R}$とするとき,四面体$\mathrm{OABC}$の体積$V$に対する四面体$\mathrm{PABR}$の体積$W$の比$\displaystyle \frac{W}{V}$を求めよ.
宮城教育大学 国立 宮城教育大学 2011年 第2問
四面体$\mathrm{OABC}$において
\begin{align}
& \mathrm{OA}=\sqrt{2},\quad \mathrm{OB}=3,\quad \mathrm{OC}=2, \nonumber \\
& \angle \mathrm{AOB}=45^\circ,\quad \angle \mathrm{BOC}=60^\circ,\quad \angle \mathrm{COA}=45^\circ \nonumber
\end{align}
である.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)辺$\mathrm{AB}$の中点を$\mathrm{D}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{E}$とし,線分$\mathrm{AE}$と線分$\mathrm{CD}$との交点を$\mathrm{F}$とするとき,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{F}$から平面$\mathrm{OBC}$におろした垂線と平面$\mathrm{OBC}$との交点を$\mathrm{H}$とするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(3)直線$\mathrm{OH}$と辺$\mathrm{BC}$との交点を$\mathrm{I}$とするとき,$\mathrm{BI}:\mathrm{IC}$を求めよ.
宮城教育大学 国立 宮城教育大学 2011年 第3問
関数$\displaystyle f(x)=4x+\frac{22}{3}$がある.また関数$g(x)$は等式
\[ g(x)=x(x+2)+\int_{-1}^1 g(t) \, dt \]
を満たす.このとき,次の問いに答えよ.

(1)関数$g(x)$を求めよ.
(2)直線$y=f(x)$と曲線$y=g(x)$の交点の座標を求めよ.
(3)曲線$y=g(x)$と$y$軸の交点を$\mathrm{A}$,直線$y=f(x)$と曲線$y=g(x)$の交点のうち$x$座標の値が小さい方を$\mathrm{B}$,直線$y=f(x)$と$y$軸の交点を$\mathrm{C}$とする.また点$\mathrm{P}$を線分$\mathrm{BC}$上にとり,点$\mathrm{P}$を通り$y$軸に平行な直線と曲線$y=g(x)$の交点を$\mathrm{Q}$とする.このとき,線分$\mathrm{PQ}$,線分$\mathrm{PA}$,および曲線$y=g(x)$で囲まれた図形の面積が最大となる点$\mathrm{P}$の座標と,そのときの面積を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。