タグ「交点」の検索結果

110ページ目:全1364問中1091問~1100問を表示)
茨城大学 国立 茨城大学 2011年 第3問
$k=1,\ 2$に対して放物線$y=x^2-kx+1$を$C_k$で表す.点A$(1,\ 1)$での$C_1$の接線に,点Aで直交している直線を$\ell$とし,$\ell$と$C_2$の交点のうち$x$座標が正となる点をBとする.次の各問に答えよ.

(1)点Bの座標を求めよ.
(2)曲線$C_1,\ C_2$と線分ABで囲まれた図形の面積を求めよ.
宇都宮大学 国立 宇都宮大学 2011年 第6問
曲線$C_1$は媒介変数$t$を用いて
\[ x=t-\sin t,\quad y=1-\cos t \quad (0 \leqq t \leqq 2\pi) \]
と表されるとする.また,曲線$C_2$は
\[ x=t-\sin t,\quad y=1+\cos t \quad (0 \leqq t \leqq 2\pi) \]
と表されるとする.このとき,次の問いに答えよ.

(1)$C_1$と$C_2$は直線$y=1$に関して対称であることを示せ.
(2)$C_1$と$C_2$の交点の座標を求めよ.
(3)$C_1$と$C_2$で囲まれた部分を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
山梨大学 国立 山梨大学 2011年 第2問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=2,\ \mathrm{OB}=3,\ \mathrm{AB}=k$とする.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を$k$を用いて表し,$k$の値の範囲を求めよ.
(2)点$\mathrm{A}$を通り直線$\mathrm{OB}$に垂直な直線と直線$\mathrm{OB}$との交点を$\mathrm{P}$としたとき,$\overrightarrow{\mathrm{OP}}=s\overrightarrow{\mathrm{OB}}$を満たす$s$を$k$を用いて表せ.また,線分$\mathrm{AP}$の長さを$k$を用いて表せ.
(3)辺$\mathrm{AB}$の中点を$\mathrm{Q}$とし,直線$\mathrm{OQ}$と直線$\mathrm{AP}$の交点を$\mathrm{R}$とする.$k=4$のとき線分$\mathrm{OR}$の長さを求めよ.
山梨大学 国立 山梨大学 2011年 第3問
放物線$y=x^2+2x$を$C_1$,放物線$y=x^2-2x+2$を$C_2$とする.

(1)$C_1$と$C_2$を$y=(x-p)^2+q$の形に変形せよ.また,$C_1$と$C_2$の交点の座標を求めよ.
(2)$C_1$と$C_2$の両方に接する直線$\ell$の方程式を求めよ.
(3)$C_1$と$C_2$および$\ell$で囲まれた部分の面積を求めよ.
山形大学 国立 山形大学 2011年 第1問
四角形ABCDが円に内接しており,$\angle \text{ABC}=120^\circ,\ \text{AB}=2,\ \text{BC}=\sqrt{3}-1$を満たしているとする.このとき,次の問に答えよ.ただし,$\text{CD}=a,\ \text{AD}=b$とおき,2つの対角線AC,BDの交点をOとする.

(1)対角線ACの長さと$\angle \text{ACB}$の大きさを求めよ.
(2)対角線ACとBDが直交するとき,三角形AOBと三角形DOCは合同であることを示せ.
(3)対角線ACとBDが直交するとき,$a,\ b$の値を求めよ.
(4)$b=2a$のとき,$a$の値と$\angle \text{DCA},\ \angle \text{BAD}$の大きさを求めよ.
(5)$b=2a$のとき,三角形ABDに内接する円の半径$r$の値を求めよ.
山形大学 国立 山形大学 2011年 第3問
$xy$平面上に直線$\ell:y=(1-\sqrt{3})x+1+\sqrt{3}$と曲線$C:y=-x^2+3x$がある.次の問いに答えよ.

(1)直線$\ell$と曲線$C$の交点の座標を求めよ.
(2)連立不等式
\[ \left\{
\begin{array}{l}
y \geqq (1-\sqrt{3})x+1+\sqrt{3} \\
y \leqq -x^2+3x
\end{array}
\right. \]
の表す領域を$D$とする.

\mon[(i)] 領域$D$を$xy$平面上に図示し,$D$の面積を求めよ.
\mon[(ii)] 点$(x,\ y)$が領域$D$を動くとき,$\displaystyle \frac{y}{x}$の最大値と最小値を求めよ.
山形大学 国立 山形大学 2011年 第3問
座標平面において,点$(2,\ 0)$を中心とする半径$2$の円を$C$とする.点$(1,\ 0)$を通る直線$\ell_1$と円$C$との交点を$\mathrm{A}$,$\mathrm{B}$とし,点$(3,\ 0)$を通る直線$\ell_2$と円$C$との交点を$\mathrm{P}$,$\mathrm{Q}$とする.さらに,$\ell_1$と$\ell_2$は垂直に交わるとする.ただし,$\ell_2$は座標軸とは一致しない.$\ell_1$の傾きを$k$で表す.このとき,次の問に答えよ.

(1)$\ell_1$と$\ell_2$の交点$\mathrm{D}$は円$C$の内部にあることを示せ.
(2)弦$\mathrm{AB}$の長さを$k$を用いて表せ.
(3)弦$\mathrm{PQ}$の長さを$k$を用いて表せ.
(4)四角形$\mathrm{APBQ}$の面積の最大値を求めよ.
山形大学 国立 山形大学 2011年 第3問
正の定数$k$に対し,曲線$y=kx^2$を$C$とする.この曲線$C$を用いて,数列$\{a_n\}$を次のように定める.

\mon[(1)] $a_1>0$
\mon[(ii)] $n=1,\ 2,\ 3,\ \cdots$に対し,点P$_n (a_n,\ k(a_n)^2)$における曲線$C$の接線と$x$軸との交点の$x$座標を$a_{n+1}$とする.

このとき,次の問に答えよ.

(1)曲線$C$上の点P$_1$における接線の方程式を求めよ.
(2)$a_2$を$a_1$で表せ.
(3)$a_n$を$a_1$で表せ.
(4)曲線$C$,$x$軸,直線$x=a_n$,$x=a_{n+1}$で囲まれた図形の面積を$S_n$とする.$S_n$を$a_1$で表せ.
(5)$T_n=S_1+S_3+\cdots +S_{2n-1}$とする.$T_{n}$を$a_1$で表せ.
(6)$U_n=S_2+S_4+\cdots +S_{2n}$とする.$\displaystyle \frac{U_n}{T_n}$を求めよ.
山形大学 国立 山形大学 2011年 第1問
座標平面において,点$(2,\ 0)$を中心とする半径2の円を$C$とする.点$(1,\ 0)$を通る直線$\ell_1$と円$C$との交点をA,Bとし,点$(3,\ 0)$を通る直線$\ell_2$と円$C$との交点をP,Qとする.さらに,$\ell_1$と$\ell_2$は垂直に交わるとする.ただし,$\ell_2$は座標軸とは一致しない.$\ell_1$の傾きを$k$で表す.このとき,次の問に答えよ.

(1)$\ell_1$と$\ell_2$の交点Dは円$C$の内部にあることを示せ.
(2)弦ABの長さを$k$を用いて表せ.
(3)弦PQの長さを$k$を用いて表せ.
(4)四角形APBQの面積の最大値を求めよ.
福井大学 国立 福井大学 2011年 第2問
Oを原点とする座標平面上に2点A$(4,\ 2)$,B$(5,\ 0)$がある.AをP$_0$とし,P$_0$から直線OBに下ろした垂線と直線OBとの交点をP$_1$,P$_1$から直線OAに下ろした垂線と直線OAとの交点をP$_2$とする.同様にして,自然数$n$に対して,P$_{2n}$から直線OBに下ろした垂線と直線OBとの交点をP$_{2n+1}$,P$_{2n+1}$から直線OAに下ろした垂線と直線OAとの交点をP$_{2n+2}$とする.さらに,自然数$n$に対して,線分P$_{n-1}$P$_n$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_n$を$n$の式で表せ.
(2)$l_1+l_2+\cdots +l_n> \text{OA}+\text{OB}$となる最小の$n$の値を求めよ.ただし,$\log_{10}2=0.3010$とする.
(3)線分P$_{2n-1}$P$_{2n}$の中点をM$_n$とするとき,点M$_1$,M$_2$,M$_3$,$\cdots$,M$_n$,$\cdots$は一直線上にあることを示し,その直線の方程式を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。