タグ「交点」の検索結果

108ページ目:全1364問中1071問~1080問を表示)
島根大学 国立 島根大学 2011年 第1問
平面上に一辺の長さが1の正三角形OABと,辺AB上の点Cがあり,$\text{AC}<\text{BC}$とする.点Aを通り直線ABに直交する直線$k$と,直線OCとの交点をDとする.$\triangle$OCAと$\triangle$ACDの面積比が$1:2$であるとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OD}}=m\overrightarrow{\mathrm{OA}}+n\overrightarrow{\mathrm{OB}}$となる$m,\ n$を求めよ.
(2)点Dを通り,直線ODと直交する直線を$\ell$とする.$\ell$と直線OA,OBとの交点をそれぞれE,Fとするとき,$\overrightarrow{\mathrm{EF}}=s\overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$となる$s,\ t$を求めよ.
香川大学 国立 香川大学 2011年 第4問
$a>1$のとき,連立不等式
\[ \sqrt{a^2-x^2} \leqq y \leqq a^2-x^2, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_1$,連立不等式
\[ a^2-x^2 \leqq y \leqq \sqrt{a^2-x^2}, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_2$とする.このとき,次の問いに答えよ.

(1)$x \geqq 0,\ y \geqq 0$における,曲線$y=\sqrt{a^2-x^2}$と曲線$y=a^2-x^2$の交点をすべて求めよ.
(2)$x \geqq 0,\ y \geqq 0$において,2つの曲線$y=\sqrt{a^2-x^2},\ y=a^2-x^2$のグラフの概形をかき,$D_1,\ D_2$を図示せよ.
(3)$D_1,\ D_2$を$x$軸のまわりに1回転させてできる立体の体積をそれぞれ$V_1,\ V_2$とするとき,$V_1-V_2$を求めよ.
(4)$V_1<V_2$をみたす$a$の範囲を求めよ.
香川大学 国立 香川大学 2011年 第5問
$a>1$のとき,連立不等式
\[ \sqrt{a^2-x^2} \leqq y \leqq a^2-x^2, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_1$,連立不等式
\[ a^2-x^2 \leqq y \leqq \sqrt{a^2-x^2}, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_2$とする.このとき,次の問いに答えよ.

(1)$x \geqq 0,\ y \geqq 0$における,曲線$y=\sqrt{a^2-x^2}$と曲線$y=a^2-x^2$の交点をすべて求めよ.
(2)$x \geqq 0,\ y \geqq 0$において,2つの曲線$y=\sqrt{a^2-x^2},\ y=a^2-x^2$のグラフの概形をかき,$D_1,\ D_2$を図示せよ.
(3)$D_1,\ D_2$を$x$軸のまわりに1回転させてできる立体の体積をそれぞれ$V_1,\ V_2$とするとき,$V_1-V_2$を求めよ.
(4)$V_1<V_2$をみたす$a$の範囲を求めよ.
香川大学 国立 香川大学 2011年 第1問
放物線$C_1:y=x^2$と定点$\mathrm{P}(a,\ b)$(ただし,$a^2<b$)を通る放物線$C_2:y=-3x^2+2px+q$の交点を$\mathrm{A}$,$\mathrm{B}$とする.点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta \ (\text{ただし,} \ \alpha < \beta)$とする.$2$つの放物線$C_1,\ C_2$で囲まれた図形の面積を$S$とするとき,次の問に答えよ.

(1)$S$を$a,\ b,\ p$を用いて表せ.
(2)$S$を最小にする$p$とその最小値を$a,\ b$を用いて表せ.
(3)$\mathrm{M}$を線分$\mathrm{AB}$の中点とする.(2)のとき,線分$\mathrm{PM}$の長さを$a,\ b$を用いて表せ.
(4)(2)のとき,点$\mathrm{P}$における放物線$C_2$の接線$\ell$と直線$\mathrm{AB}$は平行であることを示せ.
三重大学 国立 三重大学 2011年 第2問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
三重大学 国立 三重大学 2011年 第3問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
三重大学 国立 三重大学 2011年 第4問
ふたつの曲線
\[ C_1:y=\cos x \ (0 \leqq x \leqq 2\pi),\quad C_2:y=\sin x \ (0 \leqq x \leqq 2\pi) \]
が囲む領域を$D$とする.ただし$D$は境界を含むものとする.

(1)$C_1$と$C_2$の交点の$x$座標を求め,$D$の面積を求めよ.
(2)点$(x,\ y)$が$D$内を動くとき,$\displaystyle \frac{1}{2}x+y$の最大値と最小値を求めよ.
三重大学 国立 三重大学 2011年 第3問
四面体OABCにおいて$\text{OA}=\text{OC}=\sqrt{2},\ \text{OB}=\sqrt{5},\ \text{AB}=3$であり,$\displaystyle \angle \text{AOC}=\angle \text{BOC}=\frac{\pi}{2}$であるとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{a} \cdot \overrightarrow{c},\ \overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分ABを$1:2$に内分する点をDとし,点Oから直線CDに引いた垂線と直線CDの交点をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また$|\overrightarrow{\mathrm{OH}}|$を求めよ.
鳥取大学 国立 鳥取大学 2011年 第2問
$xy$平面上の円$C_1:x^2+y^2+ax+by+28=0$は,点A$(2,\ 8)$と点B$(7,\ 7)$を通る.このとき,次の問いに答えよ.

(1)円$C_1$の中心の座標と半径を求めよ.
(2)円$C_1$上の点A,Bにおける接線をそれぞれ$\ell,\ m$とするとき,2直線$\ell,\ m$の交点の座標を求めよ.
(3)$x$の2次関数のグラフ$C_2$は(2)で求めた交点を頂点とし,点Aを通る.このとき$C_2$と$x$軸との交点の座標を求めよ.
熊本大学 国立 熊本大学 2011年 第2問
平行六面体$\mathrm{OADB}$-$\mathrm{CEGF}$において,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{AD}$を$2:3$に内分する点を$\mathrm{N}$,辺$\mathrm{DG}$を$1:2$に内分する点を$\mathrm{L}$とする.また,辺$\mathrm{OC}$を$k:1-k \ (0<k<1)$に内分する点を$\mathrm{K}$とする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,$\overrightarrow{\mathrm{MN}}$,$\overrightarrow{\mathrm{ML}}$,$\overrightarrow{\mathrm{MK}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)3点$\mathrm{M}$,$\mathrm{N}$,$\mathrm{K}$の定める平面上に点$\mathrm{L}$があるとき,$k$の値を求めよ.
(3)3点$\mathrm{M}$,$\mathrm{N}$,$\mathrm{K}$の定める平面が辺$\mathrm{GF}$と交点をもつような$k$の値の範囲を求めよ.

(図は省略)
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。