タグ「交点」の検索結果

107ページ目:全1364問中1061問~1070問を表示)
九州大学 国立 九州大学 2011年 第1問
放物線$y = x^2$上の点$\mathrm{P}(t,\ t^2)$から直線$y=x$へ垂線を引き,交点を$\mathrm{H}$とする.ただし,$t>1$とする.このとき,以下の問いに答えよ.

(1)$\mathrm{H}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$を通り$y$軸に平行な直線と直線$y=x$との交点を$\mathrm{R}$とするとき,三角形$\mathrm{PRH}$の面積を$t$を用いて表せ.
(3)$x \geqq 1$の範囲において,放物線$y = x^2$と直線$y = x$および線分$\mathrm{PH}$とで囲まれた図形の面積を$S_1$とするとき,$S_1$を$t$を用いて表せ.
(4)放物線$y=x^2$と直線$y=x$で囲まれた図形の面積を$S_2$とする.$S_1=S_2$であるとき,$t$の値を求めよ.
弘前大学 国立 弘前大学 2011年 第3問
曲線$y = x^3 +4x^2 -x$と曲線$y = x^2 +3$の3つの交点を$(x_1,\ y_1),\ (x_2,\ y_2),\ (x_3,\ y_3)$とおく.ただし$x_1 < x_2 < x_3$とする.次の問いに答えよ.

(1)2点$(x_1,\ y_1)$と$(x_3,\ y_3)$を結ぶ直線を$L$とする.このとき,直線$L$と曲線$y = x^2+3$で囲まれた部分$D$の面積を求めよ.
(2)曲線$y = x^2 +3$上の2点$(x_1,\ y_1),\ (x_3,\ y_3)$におけるこの曲線の接線をそれぞれ$L_1,\ L_2$とする.2直線$L_1$と$L_2$の交点を通り$y$軸に平行な直線を$L_0$とする.このとき,直線$L_0$は,(1)で求めた部分$D$の面積を二等分することを示せ.
岩手大学 国立 岩手大学 2011年 第4問
2つの関数を$f(x)=\sqrt{x+1} \ (x \geqq -1),\ g(x)=x^2-1 \ (x \geqq 0)$とし,$y=f(x)$と$y=g(x)$で表される曲線をそれぞれ$C_1,\ C_2$とする.このとき,次の問いに答えよ.

(1)$f(x)$の逆関数が$g(x)$であることを示せ.
(2)曲線$C_1$と曲線$C_2$の交点Pの座標を求めよ.
(3)2つの曲線$C_1,\ C_2$,および2直線$x=0,\ x=1$で囲まれた図形の面積が,(2)で求めた交点Pを通る直線により二等分されるとき,この直線の傾きを求めよ.
信州大学 国立 信州大学 2011年 第3問
$f(x) = x^3-3x^2 +x$とし,方程式$y = f(x)$が定める曲線を$K$とする.

(1)直線$y = 2x-3$と曲線$K$の$3$つの交点の座標を求めよ.
(2)$(1)$で求めた$3$つの交点を$\mathrm{A}(a,\ f(a))$,$\mathrm{B}(b,\ f(b))$,$\mathrm{C}(c,\ f(c)) (a < b < c)$とし,曲線$K$上に点$\mathrm{P}(p,\ f(p))$をとる.$p$が$b < p < c$を満たすとき,三角形$\mathrm{BPC}$の面積$S$を$p$を用いて表せ.
(3)$(2)$で求めた面積$S$の最大値とそのときの$p$の値を求めよ.
筑波大学 国立 筑波大学 2011年 第3問
$a$を$\displaystyle 0 < \alpha <\frac{\pi}{2}$を満たす定数とする.円$C : x^2 + (y+ \sin \alpha)^2 = 1$および,その中心を通る直線$\ell :y= (\tan \alpha) x - \sin \alpha$を考える.このとき,以下の問いに答えよ.

(1)直線$\ell$と円$C$の2つの交点の座標を$\alpha$を用いて表せ.
(2)等式
\[ 2\int_{\cos \alpha}^1 \sqrt{1-x^2} \, dx+ \int_{-\cos \alpha}^{\cos \alpha} \sqrt{1-x^2} \, dx = \frac{\pi}{2} \]
が成り立つことを示せ.
(3)連立方程式
\[ \left\{
\begin{array}{l}
y \leqq (\tan \alpha)x-\sin \alpha \\
x^2+(y+\sin \alpha)^2 \leqq 1
\end{array}
\right. \]
の表す$xy$平面上の図形を$D$とする.図形$D$を$x$軸のまわりに1回転させてできる立体の体積を求めよ.
福井大学 国立 福井大学 2011年 第2問
座標平面上の原点Oを中心とする半径1の円周上に,点Pがある.ただし,Pは第1象限の点である.点Pから$x$軸に下ろした垂線と$x$軸との交点をQ,線分PQを$2:1$に内分する点をRとする.$\theta=\angle \text{QOP}$のときの$\tan \angle \text{QOR}$と$\tan \angle \text{ROP}$の値をそれぞれ$f(\theta),\ g(\theta)$とおく.以下の問いに答えよ.

(1)$f(\theta)$と$g(\theta)$を$\theta$を用いて表せ.
(2)$g(\theta)$の$\displaystyle 0<\theta<\frac{\pi}{2}$における最大値と,そのときの$\theta$の値を求めよ.
滋賀大学 国立 滋賀大学 2011年 第3問
座標平面上の点$(1,\ 0)$をAとする.原点O$(0,\ 0)$を中心とし半径が1の円周上の2点P,Qは,$\displaystyle \angle \text{AOP}=\theta,\ \angle \text{AOQ}=\theta+\frac{\pi}{3},\ 0<\theta<\frac{2\pi}{3}$を満たす.また,点Pから$x$軸に引いた垂線と$x$軸の交点をBとし,点Cを四角形BPQCが平行四辺形になるように定める.ただし,点P,Qの$y$座標は正とする.このとき,次の問いに答えよ.

(1)点Cの座標を$\theta$を用いて表せ.
(2)四角形BPQCの面積の最大値を求めよ.また,そのときの$\theta$の値を求めよ.
鳥取大学 国立 鳥取大学 2011年 第1問
$xy$平面上の円$C_1:x^2+y^2+ax+by+28=0$は,点$\mathrm{A}(2,\ 8)$と点$\mathrm{B}(7,\ 7)$を通る.このとき,次の問いに答えよ.

(1)円$C_1$の中心の座標と半径を求めよ.
(2)円$C_1$上の点$\mathrm{A}$,$\mathrm{B}$における接線をそれぞれ$\ell,\ m$とするとき,$2$直線$\ell,\ m$の交点の座標を求めよ.
(3)$x$の$2$次関数のグラフ$C_2$は$(2)$で求めた交点を頂点とし,点$\mathrm{A}$を通る.このとき$C_2$と$x$軸との交点の座標を求めよ.
奈良女子大学 国立 奈良女子大学 2011年 第4問
円に内接する四角形ABCDにおいて$\text{AB}=1,\ \text{BC}=2,\ \text{CD}=3,\ \text{DA}=4$であるとする.ACとBDの交点をEとする.以下の問いに答えよ.

(1)BDの長さを求めよ.
(2)$\text{BE}:\text{ED}$を求めよ.
(3)$\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{BE}}$を求めよ.
鳥取大学 国立 鳥取大学 2011年 第2問
$xy$平面上の円$C_1:x^2+y^2+ax+by+28=0$は,点A$(2,\ 8)$と点B$(7,\ 7)$を通る.このとき,次の問いに答えよ.

(1)円$C_1$の中心の座標と半径を求めよ.
(2)円$C_1$上の点A,Bにおける接線をそれぞれ$\ell,\ m$とするとき,2直線$\ell,\ m$の交点の座標を求めよ.
(3)$x$の2次関数のグラフ$C_2$は(2)で求めた交点を頂点とし,点Aを通る.このとき$C_2$と$x$軸との交点の座標を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。