タグ「交点」の検索結果

106ページ目:全1364問中1051問~1060問を表示)
秋田大学 国立 秋田大学 2011年 第2問
関数$f(x)=e^x$について,次の問いに答えよ.

(1)原点から$y=f(x)$のグラフへ引いた接線の方程式を求めよ.
(2)(1)の接線の接点をP$_1$とする.点P$_1$から$x$軸に下ろした垂線と$x$軸との交点をA$_1(a_1,\ 0)$とする.このとき,点A$_1$から$y=f(x)$のグラフへ引いた接線の方程式を求めよ.
(3)(2)の接線の接点をP$_2$とする.点P$_2$から$x$軸に下ろした垂線と$x$軸との交点をA$_2(a_2,\ 0)$とする.このとき,点A$_2$から$y=f(x)$のグラフへ接線を引き,その接点をP$_3$とする.さらに,点P$_3$から$x$軸に下ろした垂線と$x$軸との交点をA$_3(a_3,\ 0)$とする.このようにして,次々に$x$軸上の点A$_1(a_1,\ 0)$,A$_2(a_2,\ 0)$,A$_3(a_3,\ 0)$,$\cdots$を得る.このとき,数列$a_1,\ a_2,\ a_3,\ \cdots$の一般項$a_n$を推定し,その推定が正しいことを数学的帰納法で証明せよ.
東北大学 国立 東北大学 2011年 第2問
三角形OABの辺ABを$1:2$に内分する点をCとする.動点Dは$\overrightarrow{\mathrm{OD}} = x \overrightarrow{\mathrm{OA}} \ (x \geqq 1)$を満たすとし,直線CDと直線OBの交点をEとする.

(1)実数$y$を$\overrightarrow{\mathrm{OE}} = y \overrightarrow{\mathrm{OB}}$で定めるとき,次の等式が成り立つことを示せ.
\[ \frac{2}{x} + \frac{1}{y} = 3 \]
(2)三角形OABの面積を$S$,三角形ODEの面積を$T$とするとき,$\displaystyle \frac{S}{T}$の最大値と,そのときの$x$を求めよ.
東北大学 国立 東北大学 2011年 第4問
放物線$y = x^2$ の$2$本の接線$\ell,\ m$は垂直であるとする.

(1)$\ell$の接点の座標が$(a,\ a^2)$で与えられるとき,$\ell,\ m$の交点の座標を$a$を用いて表せ.
(2)$\ell,\ m$が$y$軸に関して対称なとき,$\ell,\ m$および放物線$y = x^2$で囲まれる部分の面積を求めよ.
東北大学 国立 東北大学 2011年 第4問
平面上に長さ3の線分OAを考え,ベクトル$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{a}$で表す.$0 < t < 1$を満たす実数$t$に対して,$\overrightarrow{\mathrm{OP}} = t \overrightarrow{a}$となるように点Pを定める.大きさ 2のベクトル$\overrightarrow{b}$を$\overrightarrow{a}$と角$\theta \ (0 < \theta < \pi)$をなすようにとり,点Bを$\overrightarrow{\mathrm{OB}} =\overrightarrow{b}$で定める.線分OBの中点をQとし,線分AQと線分BPの交点をRとする.\\
\quad このとき,どのように$\theta$をとっても$\overrightarrow{\mathrm{OR}}$と$\overrightarrow{\mathrm{AB}}$が垂直にならないような$t$の値の範囲を求めよ.
静岡大学 国立 静岡大学 2011年 第3問
実数$t$が$\displaystyle 0 \leqq t \leqq \frac{2}{3}$の範囲を変化するとき,2つの曲線
\[ C : y = -2x^2+3x,\quad C_t: y = |x^2-3tx| \]
で囲まれる図形の面積を$S(t)$とおく.次の問いに答えよ.

(1)2曲線$C,\ C_t$の交点の$x$座標をすべて求めよ.
(2)$S(t)$を$t$の式で表せ.
(3)$S(t)$を最大にする$t$の値を求めよ.
岡山大学 国立 岡山大学 2011年 第4問
$p$を定数とする.
\[ f(x) = x^3+x^2+ px+1 \]
とおく.$y=f(x)$のグラフに傾き$1$の$2$つの異なる接線が引けるという.このとき,次の問いに答えよ.

(1)$p$の範囲を求めよ.
(2)$2$つの接点の$x$座標を$\alpha,\ \beta$とする.$(\alpha - \beta)^2$を$p$を用いて表せ.
(3)$2$つの接線の$y$軸との交点を$\mathrm{A}$,$\mathrm{B}$とするとき,線分$\mathrm{AB}$の長さを$p$を用いて表せ.
(4)$2$つの接線の間の距離が$\displaystyle \frac{8}{27}$となるような$p$の値を求めよ.
岡山大学 国立 岡山大学 2011年 第4問
$f(x) = e^{-x^2}$とする.曲線$y = f(x)$上の点A$(a,\ f(a))$における接線を$\ell$,原点$\mathrm{O}$を通り$\ell$に垂直な直線を$\ell^\prime$とし,$\ell$と$\ell^\prime$との交点を$\mathrm{P}$とする.

(1)線分$\mathrm{OP}$の長さを求めよ.
(2)$\ell$と$y$軸との交点を$\mathrm{Q}$とし,$\angle \mathrm{POQ}$を$\theta \ (0 \leqq \theta \leqq \pi)$とする.$\sin \theta$を$a$を用いて表せ.
(3)$(2)$で求めた$\sin \theta$を最大にする$a$の値と,そのときの$\sin \theta$の値を求めよ.
金沢大学 国立 金沢大学 2011年 第1問
座標平面上に点$\mathrm{A}(2 \cos \theta,\ 2 \sin \theta)$,$\displaystyle \mathrm{B} \left( \frac{4}{3},\ 0 \right)$,$\mathrm{C}(\cos \theta,\ -\sin \theta)$がある.ただし,$0 < \theta < \pi$とする.次の問いに答えよ.

(1)直線$\mathrm{AC}$と$x$軸の交点を$\mathrm{P}$とする.$\mathrm{P}$の座標を$\theta$で表せ.
(2)$\triangle \mathrm{ABC}$の面積$S(\theta)$を求めよ.
(3)面積$S(\theta)$の最大値とそのときの$\theta$の値を求めよ.
広島大学 国立 広島大学 2011年 第4問
平面上で,線分ABを$1:2$に内分する点をOとし,Oを中心とする半径OBの円を$S$,円$S$と直線ABとの交点のうち点Bと異なる方をCとする.点Pは円$S$の内部にあり,線分BC上にないものとする.円$S$と直線PBとの交点のうち点Bと異なる方をQとする.$\overrightarrow{\mathrm{PA}} =\overrightarrow{a},\ \overrightarrow{\mathrm{PB}} =\overrightarrow{b},\ \angle \text{APB} = \theta$とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PO}},\ \overrightarrow{\mathrm{PC}},\ \overrightarrow{\mathrm{OB}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)点Pが円$S$の内部にあることを用いて,$\displaystyle \cos \theta < \frac{|\overrightarrow{b}|}{4|\overrightarrow{a}|}$を証明せよ.
(3)PQの長さを$|\overrightarrow{a}|,\ |\overrightarrow{b}|,\ \theta$で表せ.
(4)$\text{PA}=3,\ \text{PB}=2$とする.$\triangle \text{QAB} = 3 \triangle \text{POB}$を満たすとき,$\triangle$PABの面積を求めよ.
広島大学 国立 広島大学 2011年 第3問
放物線$\displaystyle F:y=\frac{1}{2}(x+1)^2$上の点A$\displaystyle \left( 0,\ \frac{1}{2} \right)$を通り,Aにおける$F$の接線に垂直な直線を$\ell$とし,$\ell$と放物線$F$との交点のうち点Aと異なる方をB$\displaystyle \left( b,\ \frac{1}{2}(b+1)^2 \right)$とする.次の問いに答えよ.

(1)直線$\ell$の方程式と$b$の値を求めよ.
(2)放物線$F$と直線$\ell$で囲まれた部分の面積$T_1$を求めよ.
(3)線分ABを直径とする円を$C$とする.このとき,不等式$\displaystyle y \leqq \frac{1}{2}(x+1)^2$の表す領域で円$C$の内部にある部分の面積$T_2$を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。