タグ「交点」の検索結果

102ページ目:全1364問中1011問~1020問を表示)
東京女子大学 私立 東京女子大学 2012年 第2問
$xy$平面上の円$C:x^2+(y-2)^2=1$において,$C$上の点$\mathrm{N}(0,\ 3)$に対し,$\mathrm{P}$は$C$上の$\mathrm{N}$と異なる点とする.また,直線$\mathrm{NP}$と$x$軸との交点を$\mathrm{Q}$とする.このとき,以下の設問に答えよ.

(1)実数$t$を用いて$\overrightarrow{\mathrm{NQ}}=t \overrightarrow{\mathrm{NP}}$と表したとき,$\overrightarrow{\mathrm{OQ}}$を$t$,$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{ON}}$を用いて表せ.ここで$\mathrm{O}$は原点を表す.
(2)$\mathrm{P}$の座標を$(a,\ b)$とおくとき,$\mathrm{Q}$の$x$座標を$a,\ b$を用いて表せ.
(3)$\mathrm{Q}$の座標が$(\sqrt{3},\ 0)$のとき,$\mathrm{P}$の座標を求めよ.
愛知学院大学 私立 愛知学院大学 2012年 第2問
図のように,円$x^2+y^2=m^2$(ただし,$m \geqq 1$)と,直線$y=x$および直線$y=-x+1$の交点をそれぞれ,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.次の値を$m$を用いて求めなさい.

(1)$\cos \angle \mathrm{AOB}$
(2)$\mathrm{BD}$の長さ
(3)四角形$\mathrm{ABCD}$の面積$S$
(図は省略)
愛知学院大学 私立 愛知学院大学 2012年 第3問
三角形$\mathrm{ABC}$の角$\mathrm{A}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.$\mathrm{AB}=x$とおく.$\mathrm{BD}=3$,$\mathrm{CD}=2$のとき,
\[ \cos \angle \mathrm{B}=\frac{x^2+[ア][イ]}{[ウ][エ]x} \]
である.さらに$\mathrm{AD}=2$であるならば
\[ \cos \angle \mathrm{B}=\frac{[オ] \sqrt{[カ][キ]}}{[ク]} \]
である.
大阪市立大学 公立 大阪市立大学 2012年 第3問
$0 \leqq x \leqq 2\pi$の範囲で二つの曲線$y=\sin x$と$y= k \cos x$を考える.ただし,$k>0$とする.この二つの曲
線の交点の$x$座標を$\alpha,\ \beta\ (0 \leqq \alpha < \beta \leqq 2\pi)$とし,$\alpha \leqq x \leqq \beta$の範囲でこの二つの曲線に囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$k$と$\beta$を$\alpha$を用いて表せ.
(2)$S$を$k$を用いて表せ.
(3)$S=4$のとき,$\alpha \leqq x \leqq \theta$の範囲でこの二つの曲線に囲まれた図形の面積が2となるような$\theta$の値を求めよ.
青森公立大学 公立 青森公立大学 2012年 第1問
次の[\phantom{ア]}に適する数または式を入れよ.\\
\quad 座標平面内に円$S:x^2+y^2=4$と,円$S$上に異なる2点A$(a,\ b)$,B$(c,\ d)$があり,$ad-bc \neq 0$を満たしている.\\
\quad 点Aにおける円$S$の接線$\ell$の方程式は,$ax+by=[ア]$である.点Bにおける円$S$の接線を$m$とおくと,2直線$\ell$と$m$の交点Pの$x$座標は,$a,\ b,\ c,\ d$を用いて[イ]である.ここで,点Pの座標をP$(p,\ q)$とおくと,直線ABの方程式は,$p,\ q$を用いて[ウ]となる.\\
\quad 次に$0 \leqq \theta \leqq \pi$のとき,$t = \sin \theta + \cos \theta$とおくと,$t$の値のとりうる範囲は[エ]である.また,$t$を用いて$\sin \theta \cos \theta = [オ]$と表せる.このとき,関数$z=2\sin \theta \cos \theta + \sqrt{2}\sin \theta + \sqrt{2} \cos \theta + 6$を$t$を用いて表すと,$z = [カ]$となる.$z$の最大値は[キ]であり,最小値は[ク]となる.最小値をとる$\theta$の値は[ケ]である.\\
\quad 交点P$(p,\ q)$が,原点Oを中心とし$z$の最大値を半径とする円の周上を動くように,2点A,Bが円$S$の周上を動くとき,直線ABが通らない範囲の面積は[コ]である.
首都大学東京 公立 首都大学東京 2012年 第2問
実数$m$が$m>-1$を満たすとき,直線$\ell:y=mx$と放物線$C:y=x^2-x$の$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)点$\mathrm{P}$における$C$の接線と点$\mathrm{Q}$における$C$の接線の交点を$\mathrm{R}$とする.このとき,$\mathrm{R}$の座標を求めなさい.
(2)$\ell$と$C$で囲まれた部分の面積を$S_1$とし,$\triangle \mathrm{PQR}$の面積を$S_2$とするとき,$\displaystyle \frac{S_1}{S_2}$を求めなさい.
首都大学東京 公立 首都大学東京 2012年 第1問
楕円$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>0,\ b>0)$上の点P$(x_0,\ y_0) (0 < x_0 < a,\ y_0>0)$における接線と$x$軸,$y$軸との交点をそれぞれA,Bとする.以下の問いに答えなさい.

(1)$\displaystyle \frac{\ x_0^2 \ }{a^2}=t$とおくとき,線分ABの長さ$\overline{AB}$を$a,\ b,\ t$を用いて表しなさい.
(2)$0<x_0<a$における$\overline{AB}$の最小値を求めなさい.また,そのときのPの座標を求めなさい.
首都大学東京 公立 首都大学東京 2012年 第2問
原点O$(0,\ 0,\ 0)$と点A$(1,\ 1,\ 1)$を通る直線を$\ell$とし,3点B$(1,\ 0,\ 0)$,C$(0,\ 2,\ 0)$,D$(0,\ 0,\ 3)$を通る平面を$\alpha$とする.以下の問いに答えなさい.

(1)ベクトル$\overrightarrow{a}$は平面$\alpha$に垂直で,成分がすべて正であり,長さが7になるものとする.このとき,$\overrightarrow{a}$を成分で表しなさい.
(2)$\triangle$BCDの面積を求めなさい.
(3)Oから平面$\alpha$へ引いた垂線と平面$\alpha$との交点をHとする.線分OHの長さを求めなさい.
(4)Pは座標がすべて正である直線$\ell$上の点とする.Pを中心とする半径7の球面が点Qで平面$\alpha$に接するとき,P,Qの座標を求めなさい.
高知工科大学 公立 高知工科大学 2012年 第1問
次の各問に答えよ.

(1)$x^3-2x^2+7x-1=(x-1)^3+a(x-1)^2+b(x-1)+c$が$x$についての恒等式であるとき,定数$a,\ b,\ c$の値を求めよ.
(2)方程式$|x|+3 |x-2|=x+1$を解け.
(3)平行四辺形OABCにおいて,辺AB上に点Dを
\[ \text{AD}:\text{DB}=2:1 \]
を満たすようにとり,BCの中点をEとする.直線ODと直線AEとの交点をFとするとき,線分の長さの比の値$\displaystyle \frac{\text{OF}}{\text{OD}},\ \frac{\text{AF}}{\text{AE}}$を求めよ.
(4)定数$a$を含む開区間で定義された関数$y=f(x)$の$x=a$における微分系数$f^{\, \prime}(a)$の定義を書け.また,その定義に従って,実数全体で定義された関数$f(x)=x^2$の$x=a$における微分系数$f^{\, \prime}(a)$を求めよ.
高知工科大学 公立 高知工科大学 2012年 第3問
右図のように$\mathrm{AB}=\mathrm{AC}$である二等辺三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の \\
二等分線と辺$\mathrm{BC}$の交点を$\mathrm{H}$とし,$\theta=\angle \mathrm{BAH}$,$\mathrm{AH}=1$とする. \\
$\triangle \mathrm{ABC}$の内接円$C_1$から始めて,$2$辺$\mathrm{AB}$,$\mathrm{AC}$に接し,かつ,隣り \\
合う$2$円が互いに外接する円の列$C_1,\ C_2,\ C_3,\ \cdots$を三角形の中に \\
作り,その半径を$r_1,\ r_2,\ r_3,\ \cdots$,面積を$S_1,\ S_2,\ S_3,\ \cdots$とする. \\
このとき,次の各問に答えよ.
\img{676_242_2012_1}{45}


(1)$r_1,\ r_2$の値を求めよ.
(2)数列$\{r_n\}$の一般項$r_n$を求めよ.
(3)無限級数
\[ \sum_{n=1}^\infty S_n=S_1+S_2+\cdots +S_n+\cdots \]
の和を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。