タグ「交点」の検索結果

100ページ目:全1364問中991問~1000問を表示)
産業医科大学 私立 産業医科大学 2012年 第2問
座標平面上の原点を$\mathrm{O}$とする.中心が$\mathrm{O}$,半径が$1$の円を$C$とする.円$C$の外部の点を$\mathrm{P}(x_0,\ y_0)$とする.点$\mathrm{P}$を通り円$C$に接する$2$直線を$\ell_1$,$\ell_2$とする.このとき,次の問いに答えなさい.

(1)直線$\ell_1$,$\ell_2$と円$C$の$2$つの接点を結ぶ線分の中点の座標を,点$\mathrm{P}$の座標$x_0$と$y_0$で表しなさい.
(2)直線$\ell_1$,$\ell_2$は$y$軸に平行でないとする.直線$\ell_1$,$\ell_2$と$y$軸の交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,線分$\mathrm{QR}$の中点を$\mathrm{M}$とする.ただし,点$\mathrm{Q}$と$\mathrm{R}$が一致するときは,点$\mathrm{M}$は点$\mathrm{Q}$,$\mathrm{R}$と一致する点とする.このとき,点$\mathrm{M}$の$y$座標が$2$となる点$\mathrm{P}$の描く曲線と直線$\displaystyle y=\frac{1}{\sqrt{3}}x+1$で囲まれる図形の面積を求めなさい.
千葉工業大学 私立 千葉工業大学 2012年 第2問
次の各問に答えよ.

(1)放物線$C:y=-x^2+4x+5$の頂点を$\mathrm{A}$とし,$C$と$x$軸の正の部分との交点を$\mathrm{B}$とする.このとき,$\mathrm{A}([ア],\ [イ])$であり,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の方程式は$y=[ウエ]x+[オカ]$である.また,$C$の$0 \leqq x \leqq [ア]$の部分,$y$軸,および$\ell$で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を$a_1=-3$,$a_2=1$,
\[ a_{n+2}=-2a_{n+1}-4a_n \cdots\cdots① \]
で定める.このとき,
\[ a_{n+3}=-2a_{n+2}-4a_{n+1} \cdots\cdots② \]
であり,$②$に$①$を代入すると$a_{n+3}=[コ]a_n$となる.$b_n=a_{3n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は初項$[サシ]$,公比$[ス]$の等比数列であり,$b_n$が初めて$7$桁の数になるのは$n=[セ]$のときである.ただし,$\log_{10}2=0.3010$とする.
大阪薬科大学 私立 大阪薬科大学 2012年 第1問
次の問いに答えなさい.

(1)自然数$m,\ n$に対し,命題「$m^2+n^2$が偶数ならば,$m+n$は偶数である」が真ならば「真」と,偽ならば反例を$[$\mathrm{A]$}$に記入しなさい.
(2)$2^x=5^y=100$のとき,$\displaystyle \frac{1}{x}+\frac{1}{y}=[$\mathrm{B]$}$となる.
(3)$xy$座標平面において,円$x^2+y^2=3$と直線$x+y=1$の$2$つの交点を結ぶ線分の長さは,$[$\mathrm{C]$}$である.
(4)数直線上を動く点$\mathrm{P}$が原点$\mathrm{O}$にある.表と裏が等しい確率で出るコインを投げ,表が出ると正方向に$1$だけ進み,裏が出ると負方向に$1$だけ進むことを繰り返す.コインを$10$回投げるとき,$\mathrm{P}$の座標が$-6$となる確率は,$[$\mathrm{D]$}$である.
(5)方程式$x^3-3x^2-9x-a=0$が異なる$3$つの実数解を持つとき,定数$a$が満たさなければならない条件を$[あ]$で求めなさい.
大阪薬科大学 私立 大阪薬科大学 2012年 第3問
次の問いに答えなさい.

原点を$\mathrm{O}$とする$xy$座標平面に,点$\mathrm{A}(3,\ 4)$がある.$\mathrm{O}$を中心に反時計回りに$\displaystyle \frac{1}{4}\pi$だけ回転することで,$\mathrm{A}$は点$\mathrm{B}$に移る.

(1)$\overrightarrow{\mathrm{OA}}$と$x$軸の正の向きがなす角を$\alpha$とすると,$\tan \alpha=[$\mathrm{J]$}$である.
(2)$\overrightarrow{\mathrm{OB}}$の成分は$[$\mathrm{K]$}$である.
(3)$\overrightarrow{\mathrm{OC}}=-2 \sqrt{2} \, \overrightarrow{\mathrm{OB}}$となる点$\mathrm{C}$を定め,$\mathrm{OA}$と$\mathrm{OC}$を$2$辺とする平行四辺形$\mathrm{OAPC}$を考える.また,$\mathrm{O}$と$\mathrm{P}$を通る直線を$\ell$とする.

(i) $\ell$の方程式は,$y=[$\mathrm{L]$}$である.
(ii) $3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{C}$を通る放物線と$\ell$で囲まれる部分の面積は,$[$\mathrm{M]$}$である.
(iii) $\mathrm{AP}$を$(1-t):t$に内分する点を$\mathrm{D}$,$\mathrm{CD}$と$\ell$の交点を$\mathrm{E}$とするとき,$\mathrm{DE}:\mathrm{EC}$を$[う]$で求めなさい.
吉備国際大学 私立 吉備国際大学 2012年 第2問
$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{AG}$と$\mathrm{BC}$の交点を$\mathrm{M}$とする.また$\mathrm{A}$,$\mathrm{G}$から直線$\mathrm{BC}$に垂線をおろしその足を$\mathrm{H}$,$\mathrm{K}$とする.

(1)$\mathrm{AG}:\mathrm{AM}$を求めよ.
(2)$\mathrm{AH}:\mathrm{GK}$を求めよ.
(3)$\triangle \mathrm{ABC}:\triangle \mathrm{GBC}$を求めよ.
吉備国際大学 私立 吉備国際大学 2012年 第3問
最大値が$7$で,そのグラフが$2$点$(0,\ 3)$,$(4,\ 3)$を通る$2$次関数がある.

(1)この関数の式を求めよ.
(2)この関数と$x$軸との交点の距離を求めよ.
(3)この関数のグラフを,$-3<x<6$の範囲でできるだけ詳しく図示しなさい.
中央大学 私立 中央大学 2012年 第3問
座標平面において,原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円を$C_0$とし,点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$を中心とする半径が$\displaystyle \frac{1}{2}$の円を$C_1$とする.以下の問いに答えよ.

(1)円$C_0$と内接し,円$C_1$と外接する円$D$の半径を$r$,中心$\mathrm{G}$の座標を$(\alpha,\ \beta)$とするとき,$r$を$\alpha$によって表せ.
(2)中心$\mathrm{G}(\alpha,\ \beta)$の軌跡の方程式を求めよ.
以上で考察した円$D$は無数にあるが,これらの円はどれも点$\displaystyle \mathrm{B}(\frac{1}{3},\ 0)$を中心とする半径$\displaystyle \frac{2}{3}$の円$C_2$と特別な位置関係にある.以下ではこのことを調べてみよう.円$D$と円$C_2$の$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.
(3)直線$\mathrm{PQ}$の方程式を$\alpha,\ \beta$により表せ.
(4)点$\mathrm{P}$の座標$(X,\ Y)$が直線$\mathrm{PQ}$の方程式と円$C_2$の方程式を満たしていることを利用して,$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{GP}}=0$を示せ.
大同大学 私立 大同大学 2012年 第4問
$0<a<2$,$f(x)=x^2(x-2)$,$g(x)=a^2(x-2)$とする.

(1)曲線$y=f(x)$と直線$y=g(x)$の交点の$x$座標を求めよ.
(2)曲線$y=f(x)$と直線$y=g(x)$で囲まれる$2$つの部分の面積の和$S(a)$を求めよ.
(3)$S(a)$を最小にする$a$の値を求めよ.
九州産業大学 私立 九州産業大学 2012年 第2問
円$\mathrm{O}$に内接する台形$\mathrm{ABCD}$において,$\mathrm{AB}=4$,$\mathrm{CD}=2$,$\mathrm{AB}$と$\mathrm{CD}$が平行である.対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とし,$\angle \mathrm{ABD}={60}^\circ$である.

(1)$\triangle \mathrm{ABE}$の面積は$[ア] \sqrt{[イ]}$である.
(2)辺$\mathrm{AD}$の長さは$\mathrm{AD}=[ウ] \sqrt{[エ]}$である.
(3)台形$\mathrm{ABCD}$の高さは$[オ] \sqrt{[カ]}$である.
(4)台形$\mathrm{ABCD}$の面積は$[キ] \sqrt{[ク]}$である.

(5)円$\mathrm{O}$の半径は$\displaystyle \frac{[ケ] \sqrt{[コサ]}}{[シ]}$である.
安田女子大学 私立 安田女子大学 2012年 第4問
座標平面上の直線$y=2x+1$を直線$\ell$とし,直線$\ell$と$y$軸の交点を$\mathrm{A}$とする.第$1$象限内における直線$\ell$上の任意の点を中心とし$\mathrm{A}$を通る円$\mathrm{O}$を考える.直線$\ell$と円$\mathrm{O}$の交点のうち,$\mathrm{A}$と異なるもう一方の交点を$\mathrm{B}$とする.また,$\mathrm{A}$を通り$x$軸に平行な直線と円$\mathrm{O}$の交点のうち,$\mathrm{A}$と異なる交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{BAC}$の値を求めよ.
(2)直線$\mathrm{BC}$は$y$軸に平行であることを証明せよ.
(3)円$\mathrm{O}$が$x$軸と接するとき,接点の$x$座標を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。