タグ「交互」の検索結果

2ページ目:全20問中11問~20問を表示)
東北大学 国立 東北大学 2013年 第3問
$\mathrm{A}$,$\mathrm{B}$の$2$人が,サイコロを$1$回ずつ交互に投げるゲームを行う.自分の出したサイコロの目を合計して先に$6$以上になった方を勝ちとし,その時点でゲームを終了する.$\mathrm{A}$から投げ始めるものとし,以下の問いに答えよ.

(1)$\mathrm{A}$がちょうど$2$回投げて$\mathrm{A}$が勝ちとなる確率を求めよ.
(2)$\mathrm{B}$がちょうど$2$回投げて$\mathrm{B}$が勝ちとなる確率を求めよ.
(3)$\mathrm{B}$がちょうど$3$回投げて,その時点でゲームが終了していない確率を求めよ.
東北大学 国立 東北大学 2013年 第3問
$\mathrm{A}$,$\mathrm{B}$の2人が,サイコロを1回ずつ交互に投げるゲームを行う.自分の出したサイコロの目を合計して先に6以上になった方を勝ちとし,その時点でゲームを終了する.$\mathrm{A}$から投げ始めるものとし,以下の問いに答えよ.

(1)$\mathrm{B}$がちょうど1回投げて$\mathrm{B}$が勝ちとなる確率を求めよ.
(2)$\mathrm{B}$がちょうど2回投げて$\mathrm{B}$が勝ちとなる確率を求めよ.
(3)$\mathrm{B}$がちょうど2回投げて,その時点でゲームが終了していない確率を求めよ.
九州大学 国立 九州大学 2012年 第2問
$2$次の正方行列$A,\ B$はそれぞれ
\begin{eqnarray}
A \left( \begin{array}{r}
-3 \\
5
\end{array} \right) = \left( \begin{array}{r}
0 \\
-1
\end{array} \right), & & \quad A \left( \begin{array}{r}
7 \\
-9
\end{array} \right) = \left( \begin{array}{r}
8 \\
-11
\end{array} \right), \nonumber \\
B \left( \begin{array}{r}
0 \\
-1
\end{array} \right) = \left( \begin{array}{r}
-5 \\
6
\end{array} \right), & & \quad B \left( \begin{array}{r}
8 \\
-11
\end{array} \right) = \left( \begin{array}{r}
-7 \\
10
\end{array} \right) \nonumber
\end{eqnarray}
をみたすものとする.このとき,以下の問いに答えよ.ただし,$E$は$2$次の単位行列を表すものとする.

(1)行列$A,\ B,\ A^2,\ B^2$を求めよ.
(2)$(AB)^3 = E$であることを示せ.
(3)行列$A$から始めて,$B$と$A$を交互に右から掛けて得られる行列
\[ A,\ AB,\ ABA,\ ABAB,\ \cdots \]
および行列$B$から始めて,$A$と$B$を交互に右から掛けて得られる行列
\[ B,\ BA,\ BAB,\ BABA,\ \cdots \]
を考える.これらの行列の内で,相異なるものをすべて成分を用いて表せ.
早稲田大学 私立 早稲田大学 2012年 第2問
次の問に答えよ.

(1)$4$個の数字$2,\ 4,\ 9,\ 12$から重複を許して$4$個選ぶとき,選んだ$4$個の数の平均が$8$になる確率は$[カ]$である.
(2)$\mathrm{A}$,$\mathrm{B}$の$2$人が$1$つのサイコロを$1$回ずつ交互に投げる.$\mathrm{A}$から始めて$\mathrm{A}$,$\mathrm{B}$,$\mathrm{A}$,$\mathrm{B}$の順で$1$人$2$回,$2$人あわせて$4$回投げるものとする.

(3)先に$2$回偶数を出した人を勝ちとするとき,$\mathrm{B}$が勝つ確率は$[キ]$である.
(4)先に$2$回$1$の目を出した人を勝ちとするとき,$\mathrm{B}$が勝つ確率は$[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
自然数$n$に対し整数を値にとる関数$f(n)$を次のように定める.
テーブルの上には$n$個の碁石が置かれている.$2$人のプレーヤー$\mathrm{A}$と$\mathrm{B}$が交互に碁石を$1$個あるいは$2$個とる.そして最後に碁石をとったプレーヤーが負けである.ゲームは$\mathrm{A}$から始める.$\mathrm{B}$がいかなるとり方をしても,$\mathrm{A}$が最良のとり方をすれば勝てるときは$f(n)=1$とする.逆に$\mathrm{A}$がいかなるとり方をしても,$\mathrm{B}$が最良のとり方をすれば勝てないときは$f(n)=-1$とする.それ以外の場合は$f(n)=0$とする.たとえば$f(1)=-1$,$f(2)=1$である.
\[ f(3)=[(101)][(102)],\quad f(4)=[(103)][(104)],\quad f(5)=[(105)][(106)] \]
であり
\[ \sum_{n=1}^{20}f(n)=[(107)][(108)] \]
となる.
金沢工業大学 私立 金沢工業大学 2012年 第1問
次の問いに答えよ.

(1)$x=\sqrt{7}-\sqrt{3}$,$y=\sqrt{7}+\sqrt{3}$のとき,$\displaystyle \frac{1}{x}-\frac{1}{y}=\frac{\sqrt{[ア]}}{[イ]}$であり,$\displaystyle \frac{1}{x^3}-\frac{1}{y^3}=\frac{[ウ] \sqrt{[エ]}}{[オ]}$である.
(2)$(9x-5)(2x+3)+10x-41=([カ]x-[キ])([ク]x+[ケ])$である.
(3)連立不等式$\displaystyle \frac{5x-7}{3}-1 \leqq x+2<\frac{4x-3}{2}$の解は$\displaystyle \frac{[コ]}{[サ]}<x \leqq [シ]$である.
(4)等式$2 |x-1|+x-7=0$を満たす実数$x$の値は$[スセ]$と$[ソ]$である.
(5)男子$4$人,女子$3$人が$1$列に並ぶとき,男女が交互に並ぶ並び方は$[タチツ]$通りである.
(6)$1$から$9$までの整数を$1$つずつ書いたカードが$9$枚ある.この中から同時に$2$枚を取り出したとき,それらの整数の積が偶数である確率は$\displaystyle \frac{[テト]}{[ナニ]}$である.
(7)$0^\circ \leqq \theta \leqq 90^\circ$とする.$\displaystyle \sin \theta=\frac{1}{5}$のとき,
\[ \sin (180^\circ-\theta)+\cos (180^\circ-\theta)+\tan (90^\circ-\theta)=\frac{[ア]+[イ] \sqrt{[ウ]}}{[エ]} \]
である.
(8)$a,\ b$を正の整数の定数とする.$2$次関数$y=2x^2+(a-2)x+3-b$のグラフが$x$軸と接するとき,$a=[オ]$,$b=[カ]$,あるいは$a=[キ]$,$b=[ク]$である.ただし,$[オ]<[キ]$である.
和歌山県立医科大学 公立 和歌山県立医科大学 2012年 第3問
$\mathrm{A}$と$\mathrm{B}$の$2$人が袋の中から玉を$1$つずつ交互に取り出すゲームを考える.最初に玉を取り出すのは$\mathrm{A}$で,また$\mathrm{A}$と$\mathrm{B}$はともに取り出した玉を袋に戻さない.

(1)初め袋の中には白玉が$(2n-2)$個($n \geqq 1$),赤玉が$2$個入っているとする.$2$つ目の赤玉を取り出した方を勝ちとして終了するとき,$\mathrm{A}$が勝つ確率を求めよ.
(2)初め袋の中には白玉が$(2n-3)$個($n \geqq 2$),赤玉が$2$個,黒玉が$1$個入っているとする.次の$(ⅰ)$と$(ⅱ)$にしたがって勝敗を決めるとき,$\mathrm{A}$が勝つ確率を求めよ.

(i) 一方が黒玉を取り出したときは,他方を勝ちとして終了する.
(ii) 一方が$2$つ目の赤玉を取り出したときは,その者を勝ちとして終了する.
九州工業大学 国立 九州工業大学 2011年 第4問
図のような番号のついたマス目と駒とサイコロを使って,以下に示す規則にしたがうゲームを考える.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline
\end{tabular}

\begin{itemize}
駒は最初0番のマス目に置く.
サイコロを投げ,出た目の数だけ駒を10番のマス目に向かって進める.
駒がちょうど10番のマス目に止まればゴールとする.
ただし,10番のマス目を超える場合は,その分だけ10番のマス目から0番のマス目側に戻る.
\end{itemize}
たとえば,7番のマス目に駒があり,出た目が5であった場合は,駒は8番のマス目に移動し,その次に出た目が2であった場合はゴールする.以下の問いに答えよ.

(1)2投目でゴールする確率を求めよ.
(2)2投目の後,9番のマス目に駒がある確率を求めよ.
(3)3投目でゴールする確率を求めよ.
(4)このゲームを使ってA,Bの2名が対戦する.Aから始めて,交互にサイコロを投げて各自の駒を進める試行を行ない,先にゴールした方を勝ちとする.ただし,どちらも2投以内でゴールしない場合は引き分けとする.引き分ける確率を求めよ.
(5)A,Bの駒をそれぞれ0番,$k$番$(0<k<10)$のマス目に置いて(4)と同様の対戦を開始するとき,Aが勝つ確率よりBが勝つ確率の方が高くなるための$k$の条件を求めよ.
大阪教育大学 国立 大阪教育大学 2011年 第4問
次のようなゲームを考える.成功の確率が$p \ (0<p<1)$,失敗の確率が$q \ (=1-p)$であるような試行をAとBの2人が行い,先に成功した方を勝ちとする.なお,Aが勝つ確率がBが勝つ確率より大きいとき,ゲームはAに有利であるといい,Aが勝つ確率とBが勝つ確率が等しいとき,ゲームは公平であるという.このとき,次の問に答えよ.

(1)Aから始めて,以後交互に試行を行う.すなわち,ABABAB$\cdots$という順で試行を行う.このとき,$p$の値にかかわらずゲームはAに有利であることを示せ.
(2)Aから始めるが,Aが1回に対して,Bは2回試行を行えるとする.すなわち,ABBABB$\cdots$という順で試行を行う.$p$がどのような値のとき,ゲームは公平になるか.
(3)(2)において,ゲームが公平であるとき,$q$についての等式$q=q^2+q^4+q^6+\cdots$が成り立つことを示せ.
宮城大学 公立 宮城大学 2011年 第3問
$\mathrm{A}$,$\mathrm{B}$の$2$人が交互にさいころを投げ,出た目の数を自分の得点とする.初めに$\mathrm{A}$がさいころを投げ,自分の得点の合計が先に$6$以上になった方を勝ちとしてゲームを終了する.ただし,例外として次の$3$つのルールを定める.
\begin{itemize}
$\mathrm{A}$が$1$の目を出したときは$\mathrm{A}$の勝ちとしてゲームを終了する.
$\mathrm{A}$が$2$の目を出したときは$\mathrm{B}$の勝ちとしてゲームを終了する.
$\mathrm{B}$が$1$または$2$の目を出したときは$\mathrm{B}$の勝ちとしてゲームを終了する.
\end{itemize}
このとき次の問いに答えなさい.

(1)$\mathrm{A}$が$1$回目で勝つ確率を求めなさい.
(2)$2$回目で$\mathrm{B}$がさいころを投げてゲームが終了する確率を求めなさい.
(3)このゲームで$\mathrm{A}$が勝つ確率を求めなさい.
スポンサーリンク

「交互」とは・・・

 まだこのタグの説明は執筆されていません。