タグ「五角形」の検索結果

1ページ目:全7問中1問~10問を表示)
岐阜薬科大学 公立 岐阜薬科大学 2015年 第3問
\begin{mawarikomi}{50mm}{
(図は省略)
}
$1$辺の長さが$1$の正五角形$\mathrm{ABCDE}$があり,図のように,$5$本の対角線の交点を$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$,$\mathrm{J}$とする.$\triangle \mathrm{ABF}$,$\triangle \mathrm{BCG}$,$\triangle \mathrm{CDH}$,$\triangle \mathrm{DEI}$,$\triangle \mathrm{EAJ}$を切り取り,残った図形を使って,五角形$\mathrm{FGHIJ}$を底面とする五角錐を作るとき,次の問いに答えよ.

(1)五角形$\mathrm{FGHIJ}$の面積は$\triangle \mathrm{AFJ}$の面積の何倍か.
(2)五角錐の体積を求めよ.

\end{mawarikomi}
青山学院大学 私立 青山学院大学 2014年 第3問
下図のように,点$\mathrm{O}$を中心とし,半径が$1$で中心角が$\displaystyle \frac{2}{3} \pi$の扇形$\mathrm{OAB}$がある.$\theta$を$\displaystyle 0<\theta<\frac{\pi}{3}$を満たす角として,弧$\mathrm{AB}$上に,$\angle \mathrm{AOP}=\theta$,$\angle \mathrm{BOQ}=\theta$を満たす点$\mathrm{P}$,$\mathrm{Q}$をとる.また,点$\mathrm{P}$から線分$\mathrm{OA}$に垂線を下ろし,線分$\mathrm{OA}$との交点を$\mathrm{R}$とする.点$\mathrm{Q}$から線分$\mathrm{OB}$に垂線を下ろし,線分$\mathrm{OB}$との交点を$\mathrm{S}$とする.このとき,以下の問に答えよ.
(図は省略)

(1)三角形$\mathrm{OPR}$の面積を$\theta$を用いて表せ.
(2)三角形$\mathrm{OPQ}$の面積を$\theta$を用いて表せ.
(3)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{3}$の範囲を動くとき,五角形$\mathrm{ORPQS}$の面積の最大値を求めよ.
安田女子大学 私立 安田女子大学 2014年 第1問
次の問いに答えよ.

(1)$(xz+y)^2-(x+yz)^2$を因数分解せよ.
(2)$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={60}^\circ$,$\displaystyle \sin B=\frac{1}{3}$,$\mathrm{AB}=6$のとき,$\mathrm{AC}$を求めよ.
(3)正十五角形の内角の和を求めよ.
(4)不等式$|x^2-7x|<x-4$を解け.
安田女子大学 私立 安田女子大学 2014年 第1問
次の問いに答えよ.

(1)$(xz+y)^2-(x+yz)^2$を因数分解せよ.
(2)$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={60}^\circ$,$\displaystyle \sin B=\frac{1}{3}$,$\mathrm{AB}=6$のとき,$\mathrm{AC}$を求めよ.
(3)正十五角形の内角の和を求めよ.
(4)不等式$\sin^4 \theta-\sin^2 \theta \geqq 0$を解け.ただし$0^\circ \leqq \theta<{180}^\circ$とする.
(5)$\sqrt{28-3 \sqrt{12}}$の整数部分を求めよ.
山口大学 国立 山口大学 2012年 第2問
平面上に異なる2点$\mathrm{A},\ \mathrm{B}$がある.$\mathrm{A}$を通る直線$\ell_1,\ \ell_2,\ \ell_3$ \\
と$\mathrm{B}$を通る直線$m_1,\ m_2,\ m_3$が図のように交わっており, \\
直線$\ell_1$と$m_1$の交点を$\mathrm{P}$,$\ell_2$と$m_2$の交点を$\mathrm{Q}$,$\ell_3$と$m_3$の \\
交点を$\mathrm{R}$とする.ただし,$\ell_1$と$\ell_3$,$\ell_2$と$\ell_3$,$m_1$と$m_2$,$m_2$ \\
と$m_3$のなす角はすべて$\displaystyle \frac{\pi}{3}$であり,$\displaystyle 0<\angle \mathrm{PAB}<\frac{\pi}{3}$, \\
$\displaystyle 0<\angle \mathrm{PBA}<\frac{\pi}{3}$である.$\alpha=\angle \mathrm{PAB}$,$\beta=\angle \mathrm{PBA}$として,次の問いに答えなさい.
\img{650_2779_2012_1}{45}


(1)$\angle \mathrm{APB}+\angle \mathrm{AQB}$を求めなさい.
(2)5点$\mathrm{A}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{B}$,$\mathrm{P}$が同一円周上にあることを示しなさい.
(3)5点$\mathrm{A}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{B}$,$\mathrm{P}$を通る円の半径が1であるとき,五角形$\mathrm{AQRBP}$の面積を$\sin \alpha$,$\sin \beta$,$\sin 2 \alpha$,$\sin 2 \beta$を用いて表しなさい.
岡山県立大学 公立 岡山県立大学 2012年 第2問
五角形$\mathrm{OABCD}$において,$\displaystyle \angle \mathrm{O}=\angle \mathrm{B}=\angle \mathrm{C}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{A}=\frac{3\pi}{4}$,$\mathrm{OA}=\mathrm{OD}=1$,$\mathrm{AB}=\mathrm{BC}$が成り立つとする.$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とし,$\mathrm{AC}$を$m:1-m$に内分する点を$\mathrm{P}$とする.ただし,$0<m<1$である.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OE}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{d}$で表せ.
(2)$\cos \angle \mathrm{BOP}$を求めよ.
(3)$\displaystyle m \neq \frac{1}{4}$のとき,三角形$\mathrm{OBP}$の面積を求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第3問
円周を$8$等分する点$\mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_8$からいくつかの点を無作為に選ぶ.どの点も選ばれる確率は等しいとするとき,次の問に答えなさい.

(1)異なる$2$点を選ぶとき,この$2$点を端点とする線分が円の直径となる確率は$\displaystyle \frac{[ア]}{[イ]}$である.
(2)異なる$3$点を選ぶとき,この$3$点からなる三角形が直角二等辺三角形となる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)異なる$4$点を選ぶとき,この$4$点からなる四角形が正方形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
(4)異なる$3$点を選ぶとき,この$3$点からなる三角形が二等辺三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(5)異なる$5$点を選ぶとき,この$5$点からなる五角形を$F$とする.残りの$3$点のうち$2$点を端点とする線分がいずれも五角形$F$と交わる確率は$\displaystyle \frac{[コ]}{[サ]}$である.
スポンサーリンク

「五角形」とは・・・

 まだこのタグの説明は執筆されていません。