タグ「二項定理」の検索結果

1ページ目:全6問中1問~10問を表示)
東京都市大学 私立 東京都市大学 2013年 第3問
$n$を自然数とする.次の問に答えよ.

(1)二項定理を用いて,$\displaystyle \sum_{k=0}^n \comb{n}{k}=2^n$が成り立つことを示せ.
(2)$\displaystyle a_k=\frac{1}{k!} (0 \leqq k \leqq n)$に対し,$\displaystyle \sum_{k=0}^n a_ka_{n-k}$を求めよ.
福井大学 国立 福井大学 2012年 第1問
$n$を自然数とするとき,以下の問いに答えよ.

(1)二項定理を用いて,$\displaystyle \sum_{k=0}^n \comb{n}{k}=\comb{n}{0}+\comb{n}{1}+\cdots +\comb{n}{n-1}+\comb{n}{n}$の値が$2^n$に等しいことを示せ.
(2)複素数$z$が$z^2-2z+2=0$をみたすとき,$z$および$z^{4n}$の値を求めよ.
(3)$\displaystyle \sum_{k=0}^{2n}(-1)^k \cdot \comb{4n}{2k}=\comb{4n}{0}-\comb{4n}{2}+\cdots -\comb{4n}{4n-2}+\comb{4n}{4n}$の値が$(-4)^n$に等しいことを示せ.
関西学院大学 私立 関西学院大学 2012年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$xy$平面における放物線
\[ y=x^2-4x+1 \]
は放物線$y=x^2$を$x$軸方向に$[ア]$,$y$軸方向に$[イ]$だけ平行移動することによって得られる.関数
\[ y=x^2-4x+1 \quad (a \leqq x \leqq a+1) \]
の最小値を$m$とおく.ただし,$a$は実数である.$a<1$の場合は$m=[ウ]$であり,$1 \leqq a \leqq 2$の場合は$m=[エ]$であり,$a>2$の場合は$m=[オ]$である.
(2)${(2x^2-xy-3y^2)}^5$の展開式における$x^5y^5$の係数を求めよう.二項定理により
\[ \begin{array}{lll}
{(2x^2-xy-3y^2)}^5 &=& \displaystyle\left\{ (2x^2-xy)-3y^2 \right\}^5 \\
&=& (2x^2-xy)^5+5(2x^2-xy)^4(-3y^2) \\
& & +[カ](2x^2-xy)^3(-3y^2)^2+10(2x^2-xy)^2(-3y^2)^3 \\
& & +5(2x^2-xy)(-3y^2)^4 +(-3y^2)^5
\end{array} \]
が成り立つ.$(2x^2-xy)^5$の展開式における$x^5y^5$の係数は$[キ]$であり,$5(2x^2-xy)^4(-3y^2)$の展開式における$x^5y^5$の係数は$[ク]$である.さらに,$[カ](2x^2-xy)^3(-3y^2)^2$の展開式における$x^5y^5$の係数は$[ケ]$である.また,$10(2x^2-xy)^2(-3y^2)^3+5(2x^2-xy)(-3y^2)^4+(-3y^2)^5$の展開式における$x^5y^5$の係数は$0$である.よって${(2x^2-xy-3y^2)}^5$の展開式における$x^5y^5$の係数は$[コ]$である.
岩手大学 国立 岩手大学 2011年 第3問
次の文章について,後の問いに答えよ.\\ \\
\quad 地球温暖化問題に関して,二酸化炭素の排出量の削減が叫ばれている.2008年に日本で開かれたサミットでは,42年後の2050年までに,年当たりの排出量を2008年のときと比較して50$\%$以上削減する,という目標が提言された.この目標を達成するために,前年比同率で削減することを考える.\\
\quad 2008年における排出量を$a \ (a>0)$とし,毎年,前年の$d \times 100 \% \ (0<d<1)$を減らすこととする.2008年の1年後の2009年の排出量の目標は[\bf ア]である.2008年から$n$年後の年間排出量を$a_n$とおくと,$a_n=[イ]$である.目標を達成するには$\displaystyle a_{42} \leqq \frac{a}{2}$,つまり,$d$を用いた式で表せば,
\[ [ウ] \leqq \frac{1}{2} \]
が成り立てばよい.両辺の逆数をとれば$\displaystyle \frac{1}{[ウ]} \geqq 2$となる.ところで,不等式
\[ (1+d)^{42} < \frac{1}{[ウ]} \ \, \cdots\cdots \maru{1} \]
が成り立つことがわかる.従って,
\[ (1+d)^{42} \geqq 2 \qquad\qquad \cdots\cdots \maru{2} \]
を満たす$d$を見つければ目標を達成することは明らかである.不等式\maru{2}の左辺は,二項定理により
\[ (1+d)^{42} =\sum_{r=0}^{42} [エ] \]
と表される.これを用いると,\underline{$d=0.02$は不等式\maru{2}を満たす}ことがわかる.つまり,毎年$2\%$の削減を2009年から行ったとすれば,42年後の2050年の排出量は2008年の$50\%$未満となることがわかった.

(1)文章中の[ア]~[エ]に当てはまる式を答えよ.
(2)$0<d<1$とするとき,不等式\maru{1}を証明せよ.
(3)下線部の命題を証明せよ.
(4)毎年$2\%$の削減を行った場合でも,42年間の排出量の合計は,削減率を0のまま2008年と同じ排出量を同じ期間続けたときの排出量の合計の$\displaystyle \frac{7}{12}$倍より大きくなることを証明せよ.
北海道医療大学 私立 北海道医療大学 2011年 第3問
二項定理と二項係数を用いて,以下の問に答えよ.ただし,$m$と$n$は正の整数である.

(1)${(x+1)}^m$の展開式における$x^r$の係数を求めよ.ただし,$r$は整数で,$0 \leqq r \leqq m$とする.
(2)${(x^2+1)}^n$の展開式における$x^{2s}$の係数を求めよ.ただし,$s$は整数で,$0 \leqq s \leqq n$とする.
(3)$m$を$2$より大きな正の整数,$n$を正の整数とするとき,${(x+1)}^m{(x^2+1)}^n$の展開式における$x^3$の係数を$m$と$n$を用いて表せ.
(4)$m$を$2$より大きな正の整数,$n$を正の整数とするとき,${(x+1)}^m{(x^2+1)}^n$の展開式における$x^3$の係数が$30$であるという.

(i) 正の整数$m$および$n$の値を求めよ.
(ii) ${(x+1)}^m{(x^2+1)}^n$の展開式における$x^5$の係数の値を求めよ.
横浜市立大学 公立 横浜市立大学 2011年 第1問
以下の問いに答えよ.

(1)関数
\[ f(x)=x \sin^2 x \quad (0 \leqq x \leqq \pi) \]
の最大値を与える$x$を$\alpha$とするとき,$f(\alpha)$を$\alpha$の分数式で表すと$[$1$]$となる.
(2)多項式
\[ a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2 \]
を因数分解すると$[$2$]$となる.
(3)$N$を与えられた自然数とし,$f(x)$および$g(x)$を区間$(-\infty,\ \infty)$で$N$回以上微分可能な関数とする.$f(x)$と$g(x)$から定まる関数を次のように定義する.$t$を与えられた実数として,
\[ \begin{array}{lll}
(f *_t g)(x) &=& \sum_{k=0}^N \displaystyle\frac{t^k}{2^k k!} f^{(k)}(x)g^{(k)}(x) \\
&=& \displaystyle f(x)g(x)+\frac{t}{2}f^\prime(x)g^\prime(x)+\cdots +\frac{t^N}{2^N N!} f^{(N)}(x)g^{(N)}(x)
\end{array} \]
とおく.ここに,$f^{(k)}(x)$は$f(x)$の第$k$次導関数である($g^{(k)}(x)$も同様である).$a$を実数,$n$を$N$以下の自然数とする.$f(x)=e^{2ax}$,$g(x)=x^n$にたいし,二項定理を用いて$(f *_t g)(x)$を計算すると$[$3$]$となる.
(4)関係式
\[ f(x)+\int_0^x f(t)e^{x-t} \, dt=\sin x \]
をみたす微分可能な関数$f(x)$を考える.$f(x)$の導関数$f^\prime(x)$を求めると,$f^\prime(x)=[$4$]$となる.$f(0)=[$5$]$であるから$f(x)=[$6$]$となる.
スポンサーリンク

「二項定理」とは・・・

 まだこのタグの説明は執筆されていません。