タグ「二項係数」の検索結果

1ページ目:全5問中1問~10問を表示)
名古屋大学 国立 名古屋大学 2013年 第3問
$k,\ m,\ n$は整数とし,$n \geqq 1$とする.$\comb{m}{k}$を二項係数として,$S_k(n),\ T_m(n)$を以下のように定める.
\begin{align}
& S_k(n)=1^k+2^k+3^k+\cdots +n^k,\quad S_k(1)=1 \quad (k \geqq 0) \nonumber \\
& T_m(n)=\comb{m}{1}S_1(n)+\comb{m}{2}S_2(n)+\comb{m}{3}S_3(n)+\cdots +\comb{m}{m-1}S_{m-1}(n) \nonumber \\
& \phantom{T_m(n)}=\sum_{k=1}^{m-1}\comb{m}{k}S_k(n) \quad (m \geqq 2) \nonumber
\end{align}

(1)$T_m(1)$と$T_m(2)$を求めよ.
(2)一般の$n$に対して$T_m(n)$を求めよ.
(3)$p$が7以上の素数のとき,$S_1(p-1),\ S_2(p-1),\ S_3(p-1),\ S_4(p-1)$は$p$の倍数であることを示せ.
名古屋大学 国立 名古屋大学 2013年 第3問
$k,\ m,\ n$は整数とし,$n \geqq 1$とする.$\comb{m}{k}$を二項係数として,$S_k(n),\ T_m(n)$を以下のように定める.
\begin{align}
& S_k(n)=1^k+2^k+3^k+\cdots +n^k,\quad S_k(1)=1 \quad (k \geqq 0) \nonumber \\
& T_m(n)=\comb{m}{1}S_1(n)+\comb{m}{2}S_2(n)+\comb{m}{3}S_3(n)+\cdots +\comb{m}{m-1}S_{m-1}(n) \nonumber \\
& \phantom{T_m(n)}=\sum_{k=1}^{m-1}\comb{m}{k}S_k(n) \quad (m \geqq 2) \nonumber
\end{align}

(1)$T_m(1)$と$T_m(2)$を求めよ.
(2)一般の$n$に対して$T_m(n)$を求めよ.
(3)$p$が3以上の素数のとき,$S_k(p-1) \ (k=1,\ 2,\ 3,\ \cdots,\ p-2)$は$p$の倍数であることを示せ.
津田塾大学 私立 津田塾大学 2012年 第1問
次の問いに答えよ.

(1)$n$を自然数とする.二項係数$\comb{2n}{n}$について,不等式$\comb{2n}{n} \leqq 2^{2n-1}$が成り立つことを示せ.
(2)$0 \leqq \theta<2\pi$のとき,不等式$1+\cos \theta+\cos 2\theta>\sin \theta+\sin 2\theta$を満たす$\theta$の値の範囲を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2012年 第4問
整数$m$が与えられたとき,$x$に関する整数係数の$2$つの整式$f(x)$,$g(x)$が関係式
\[ f(x) \equiv g(x) \pmod m \]
を満たすとは,等式$f(x)-g(x)=mh(x)$を満たすような整数係数の整式$h(x)$が存在することである.

(1)$f(x),\ g(x),\ F(x),\ G(x)$を整数係数の整式とする.もし,ある整数$m$について関係式$f(x) \equiv g(x) \pmod m$,かつ$F(x) \equiv G(x) \pmod m$が満たされるならば,関係式$f(x)+F(x) \equiv g(x)+G(x) \pmod m$,かつ$f(x)F(x) \equiv g(x)G(x) \pmod m$が満たされることを証明せよ.
(2)正整数$p (>1)$を素数とする.$p$より小さい任意の正整数$i$に対して二項係数$\comb{p}{i}$は$p$の倍数であることを証明せよ.
(3)正整数$p (>1)$を素数とする.任意の正整数$n$について,関係式
\[ (1+x)^{p^n} \equiv 1+x^{p^n} \pmod p \]
が満たされることを証明せよ.
(4)正整数$p (>1)$を素数とし,$n$を$2$以上の正整数とする.$n-1$個の二項係数$\comb{n}{i} (1 \leqq i \leqq n-1)$がすべて$p$の倍数であるための必要十分条件は,整数$n$が素数$p$の正べきである(すなわち,適当な正整数$k$を用いて$n=p^k$と表せる)ことを証明せよ.
北海道医療大学 私立 北海道医療大学 2011年 第3問
二項定理と二項係数を用いて,以下の問に答えよ.ただし,$m$と$n$は正の整数である.

(1)${(x+1)}^m$の展開式における$x^r$の係数を求めよ.ただし,$r$は整数で,$0 \leqq r \leqq m$とする.
(2)${(x^2+1)}^n$の展開式における$x^{2s}$の係数を求めよ.ただし,$s$は整数で,$0 \leqq s \leqq n$とする.
(3)$m$を$2$より大きな正の整数,$n$を正の整数とするとき,${(x+1)}^m{(x^2+1)}^n$の展開式における$x^3$の係数を$m$と$n$を用いて表せ.
(4)$m$を$2$より大きな正の整数,$n$を正の整数とするとき,${(x+1)}^m{(x^2+1)}^n$の展開式における$x^3$の係数が$30$であるという.

(i) 正の整数$m$および$n$の値を求めよ.
(ii) ${(x+1)}^m{(x^2+1)}^n$の展開式における$x^5$の係数の値を求めよ.
スポンサーリンク

「二項係数」とは・・・

 まだこのタグの説明は執筆されていません。