タグ「事象」の検索結果

4ページ目:全41問中31問~40問を表示)
酪農学園大学 私立 酪農学園大学 2012年 第3問
袋の中に$1$から$5$の番号のついた赤玉と,$1$から$10$の番号のついた白玉が,それぞれ$1$個ずつ入っている.この袋から同時に$2$個の玉を取り出す試行を考える.$A$は少なくとも$1$個が赤玉である事象,$B$は番号の和が奇数となる事象とする.事象$X$の起こる確率を$P(X)$とするとき,積事象$A \cap B$の起こる確率$P(A \cap B)$,和事象$A \cup B$の起こる確率$P(A \cup B)$を求めたい.次の文章中の空欄に値を入れよ.

「玉の取り出し方は全部で$[$1$]$通りある.
$A$の余事象$\overline{A}$の起こる場合の数は$[$2$]$通りだから,$A$の起こる確率は,
\[ P(A)=1-P(\overline{A})=[$3$] \]
となる.
一方,$B$の起こる場合の数は,赤玉$1$個と白玉$1$個を取り出すときは$[$4$]$通り,赤玉$2$個を取り出すときは$[$5$]$通り,白玉$2$個を取り出すときは$[$6$]$通りある.
よって,$B$の起こる確率は,
\[ P(B)=[$7$] \]
となる.したがって,$A \cap B$の起こる確率は,
\[ P(A \cap B)=[$8$] \]
となり,$A \cup B$の起こる確率は,
\[ P(A \cup B)=[$9$] \]
となる.」
埼玉大学 国立 埼玉大学 2011年 第4問
ダイヤ$2$枚,ハート$2$枚,クラブ$2$枚,スペード$1$枚からなる$7$枚のトランプがある.このトランプ$7$枚をよく混ぜたのち,この$7$枚を裏のまま横$1$列に並べる事象に対して,次のように点数を定める.
\begin{screen}
左から順にトランプをめくり,$n$枚目をめくって初めてダイヤ,ハート,クラブ,スペードの$4$種類がそろったときに$n$点とする.
\end{screen}
次の問いに答えよ.

(1)点数が$7$点となる確率を求めよ.
(2)点数が$6$点となる確率を求めよ.
(3)点数の期待値を求めよ.
埼玉大学 国立 埼玉大学 2011年 第4問
ダイヤ$2$枚,ハート$2$枚,クラブ$2$枚,スペード$1$枚からなる$7$枚のトランプがある.このトランプ$7$枚をよく混ぜたのち,この$7$枚を裏のまま横$1$列に並べる事象に対して,次のように点数を定める.
\begin{screen}
左から順にトランプをめくり,$n$枚目をめくって初めてダイヤ,ハート,クラブ,スペードの$4$種類がそろったときに$n$点とする.
\end{screen}
次の問いに答えよ.

(1)点数が$7$点となる確率を求めよ.
(2)点数が$6$点となる確率を求めよ.
(3)点数の期待値を求めよ.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$にあてはまる数を記入せよ.

(1)$z^2 = -2i$のとき,$z$を求めると,
\[ z= [ア]-[イ]i,\ z=-[ウ]+[エ]i \]
である.ただし,$i^2=-1$である.
(2)$2$次方程式$x^2-px+p-1=0$の$2$つの解の比が$1:3$であるとき,
\[ \text{定数}p\text{の値は}[ア],\ \text{または}\frac{[イ]}{[ウ]}\text{である} \]
(3)不等式$\log_{0.5}(5-x)<2\log_{0.5}(x-3)$の解は,
\[ [ア]<x<[イ] \]
である.
(4)放物線$y=ax^2 (a>0)$と直線$y=bx (b>0)$とで囲まれた部分の面積を$S_1$とし,交点をそれぞれ$\mathrm{O}$(原点),$\mathrm{A}$とする.$\mathrm{A}$から$x$軸に垂線$\mathrm{AH}$を下ろし,$\triangle \mathrm{AOH}$の面積を$S_2$とすると,
\[ \frac{S_1}{S_2} = \frac{[ア]}{[イ]} \]
である.
(5)事象$\mathrm{A}$の起こる確率が$\displaystyle\frac{4}{5}$,事象$\mathrm{B}$の起こる確率が$\displaystyle\frac{3}{5}$,事象$\mathrm{A}$と事象$\mathrm{B}$のどちらか一方だけが起こる確率が$\displaystyle\frac{2}{5}$であるとする.このとき,事象$\mathrm{A}$と事象$\mathrm{B}$がともに起こる確率は$\displaystyle\frac{[ア]}{[イ]}$である.
(6)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{D}$,辺$\mathrm{AC}$を$2:3$に内分する点を$\mathrm{E}$とし,$\mathrm{CD}$と$\mathrm{BE}$との交点を$\mathrm{O}$とするとき,
\[ \overrightarrow{\mathrm{OD}} = \frac{[ア]}{[イ]}\overrightarrow{\mathrm{CA}} + \frac{[ウ]}{[エ]}\overrightarrow{\mathrm{CB}} \]
である.
早稲田大学 私立 早稲田大学 2011年 第4問
公正な硬貨$X$を$3$回投げる.「$1$回目に表が出る」という事象を$A$,「$3$回目に表が出る」という事象を$B$,「試行結果が裏→表の順序で出ることはない」という事象を$C$とする.このとき,
\[ P(A \cap C)-P(A)P(C)=\frac{[ス]}{[セ]} \]
である.

次に,硬貨$X$が必ずしも公正でなく表の出る確率が$a (0<a<1)$,裏の出る確率が$1-a$であるとする.この場合の確率を$P_a$で表すとき,
\[ \frac{P_a(A)P_a(B)P_a(C)}{P_a(A \cap B \cap C)} \]
を最小にする$a$の値は$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$である.

ただし,$[セ]$,$[タ]$はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2011年 第4問
公正な硬貨$X$を$3$回投げる.「$1$回目に表が出る」という事象を$A$,「$3$回目に表が出る」という事象を$B$,「試行結果が裏→表の順序で出ることはない」という事象を$C$とする.このとき,
\[ P(A \cap C)-P(A)P(C)=\frac{[ス]}{[セ]} \]
である.

次に,硬貨$X$が必ずしも公正でなく表の出る確率が$a (0<a<1)$,裏の出る確率が$1-a$であるとする.この場合の確率を$P_a$で表すとき,
\[ \frac{P_a(A)P_a(B)P_a(C)}{P_a(A \cap B \cap C)} \]
を最小にする$a$の値は$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$である.

ただし,$[セ]$,$[タ]$はできるだけ小さな自然数で答えること.
名古屋市立大学 公立 名古屋市立大学 2011年 第2問
表が出る確率が$p \ (0<p<1)$のコイン3枚を同時に投げたとき,表と裏が出る事象を$A$,少なくとも1つが表である事象を$B$とする.次の問いに答えよ.

(1)事象$A \cap B,\ A \cup B$および$\overline{A} \cap B$の確率を求めよ.
(2)$(A \cap B) \cup (\overline{A \cup B})$は表と裏がどのように出る事象かを答え,その確率を求めよ.
(3)表1枚につき$k$点もらえるとする.得点の期待値が$6p$のとき,$k$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第1問
表が出る確率が$p \ (0<p<1)$のコイン3枚を同時に投げたとき,表と裏が出る事象を$A$,少なくとも1つが表である事象を$B$とする.次の問いに答えよ.

(1)事象$A \cap B,\ A \cup B$および$\overline{A} \cap B$の確率を求めよ.
(2)$(A \cap B) \cup (\overline{A \cup B})$は表と裏がどのように出る事象かを答え,その確率を求めよ.
(3)表1枚につき$k$点もらえるとする.得点の期待値が$6p$のとき,$k$の値を求めよ.
一橋大学 国立 一橋大学 2010年 第5問
$n$を3以上の自然数とする.サイコロを$n$回投げ,出た目の数をそれぞれ順に$X_1,\ X_2,\ \cdots,\ X_n$とする.$i=2,\ 3,\ \cdots,\ n$に対して$X_i=X_{i-1}$となる事象を$A_i$とする.

(1)$A_2,\ A_3,\ \cdots,\ A_n$のうち少なくとも1つが起こる確率$p_n$を求めよ.
(2)$A_2,\ A_3,\ \cdots,\ A_n$のうち少なくとも2つが起こる確率$q_n$を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第4問
赤玉$3$個,白玉$4$個が入っている袋から,同時に玉を$2$個取り出すとき,次の事象が起こる確率を求めよ.

(1)$2$個とも赤玉が取り出される.
(2)取り出される$2$個の玉の色が異なる.
スポンサーリンク

「事象」とは・・・

 まだこのタグの説明は執筆されていません。