タグ「事象」の検索結果

3ページ目:全41問中21問~30問を表示)
宮城大学 公立 宮城大学 2014年 第3問
次の空欄$[ア]$から$[エ]$にあてはまる数や式を書きなさい.

$3$個のさいころを同時に投げるとき,次の順に問題を考える.

(1)出た目の最大値が$4$以下である確率$P$は,$P=[ア]$である.
(2)次に,出た目の最大値が$k$以下である事象を考える.この事象の確率$Q$を$k$を用いて表せば,$Q=[イ]$である.ただし,$k=1,\ 2,\ 3,\ 4,\ 5,\ 6$とする.
(3)また,出た目の最大値が$k$である事象を考える.この事象の確率$R$を$k$を用いて表せば,$R=[ウ]$である.ただし,$k=1,\ 2,\ 3,\ 4,\ 5,\ 6$とする.
(4)最後に,出た目の最大値の期待値$E$を求めれば,$E=[エ]$となる.
浜松医科大学 国立 浜松医科大学 2013年 第3問
さいころを$4$回投げて,$k$回目($k=1,\ 2,\ 3,\ 4$)に出る目の数を$X_k$とする.$1$から$6$までの目は等確率で出るものとするとき,以下の問いに答えよ.

(1)$j,\ k \ (j<k)$は数の集合$\{1,\ 2,\ 3,\ 4\}$を動くものとする.$X_1,\ X_2,\ X_3,\ X_4$の中で,$X_j=X_k$となる組$\{j,\ k\}$が少なくとも$1$つ存在する事象を$A$,$X_j=X_k$となる組$\{j,\ k\}$がただ$1$つ存在する事象を$B$,同じ目がちょうど$3$つ出る事象を$C$とする.確率$P(A)$,$P(B)$,$P(C)$をそれぞれ求めよ.
(2)$A$が起こったときの和事象$B \cup C$の条件つき確率$P_A(B \cup C)$を求めよ.
(3)$X_1,\ X_2,\ X_3,\ X_4$の値を小さい順に並べ替えて,$X_{(1)} \leqq X_{(2)} \leqq X_{(3)} \leqq X_{(4)}$を定める.例えば,$X_1=3,\ X_2=2,\ X_3=6,\ X_4=2$の場合,$X_{(1)}=2,\ X_{(2)}=2,\ X_{(3)}=3,\ X_{(4)}=6$である.確率$P(X_{(1)}=4)$と$P(X_{(1)}=X_{(2)}=4)$をそれぞれ求めよ.
沖縄国際大学 私立 沖縄国際大学 2013年 第4問
以下の各問いに答えなさい.

(1)次の値を求めなさい.
\[ ① 4! \qquad ② \comb{10}{4} \]
(2)ジョーカーを除いた$1$組$52$枚のトランプからカードを$1$枚引くとするとき,以下の各問いに答えなさい.

\mon[$①$] カードがハート,または二桁である事象の場合の数を求めなさい.
\mon[$②$] $①$の事象を$A$としたとき,$A$の事象が生じる確率を求めなさい.
\mon[$③$] 事象$A$が生じた際には$780$円,それ以外の事象が生じた際には$260$円もらえるとしたとき,その期待値を求めなさい.
鳥取環境大学 公立 鳥取環境大学 2013年 第4問
次のようなゲームについて以下の問に答えよ.

カードが$5$枚伏せてある.$1$回の試行ではカードをかき混ぜて$1$枚をでたらめに選んでめくり,出たカードの番号に対応する賞品がもらえる.$5$種類の賞品をすべてあつめるのが目的である.ただし,めくったカードはその都度戻すものとする.
ここで,すでに$k$種類の賞品を持っている状況で試行を$1$回行ってまだ持っていない賞品がもらえる確率を$P_k$で表すとする($0 \leqq k \leqq 4$).$P_0=1$である.

(1)$P_1$の値を求めよ.
(2)$P_k$を$k$を用いた式で表せ.
(3)$5$回の試行で賞品が全種類そろう確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(4)試行を$5$回行った時点で得られている賞品が$4$種類だけである確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(5)ある事象が起きる確率が$x$であるとき,その事象が起きるまで繰り返し試行を行うならば,必要な試行回数の期待値は$\displaystyle \frac{1}{x}$だと知られている.ここで,賞品を$k$種類($0 \leqq k \leqq 4$)持っている状況から始めてまだ持っていない賞品のいずれか$1$つが得られるまでの試行回数の期待値を$Q_k$で表すとする($0 \leqq k \leqq 4$).$Q_k$を$P_k$を用いた式で表せ.さらに$k$を用いた($P_k$を使わない)形で式を表せ.
(6)賞品を$n$種類持っている状況から始めて賞品が$m$種類そろうまでの試行回数の期待値は$\displaystyle \sum_{k=n}^{m-1} Q_k$となる.ただし,$0 \leqq n<m \leqq 4$である.賞品を$1$つも持っていない状況から$4$種類そろうまでと,$4$種類そろった状況から最後の$1$種類が出るまでと,試行回数の期待値はどちらが大きいか.計算して求めよ.
滋賀医科大学 国立 滋賀医科大学 2012年 第4問
赤色,青色,黄色の箱を各一箱,赤色,青色,黄色の球を各一個用意して,各球を球と同じ色の箱に入れる.この状態からはじめて,次の操作を$n$回($n \geqq 1$)行う. \\
(操作) \ 三つの箱から二つの箱を任意に選び,その二つの箱の中の球を交換する.

(1)赤球の球が赤色の箱に入っている確率を求めよ.
(2)箱とその中の球の色が一致している箱の個数の期待値を求めよ.
(3)赤色の球が赤色の箱に入っている事象と,青色の球が青色の箱に入っている事象は,互いに独立かどうか,理由を付けて答えよ.
浜松医科大学 国立 浜松医科大学 2012年 第4問
$1$個のさいころを$3$回投げる.$1$回目,$2$回目,$3$回目に出る目の数をそれぞれ$X_1,\ X_2,\ X_3$として,$3$つの確率変数
\[ Y=4X_1+X_2,\quad Z_1=2X_1+3X_2,\quad Z_2=2X_1+3X_3 \]
を定める.$1$から$6$までの目は等確率で出るものとするとき,以下の問いに答えよ.

(1)数の集合$U=\{x \;|\; x \text{は整数かつ}5 \leqq x \leqq 30 \}$を全体集合として,
\[ \begin{array}{l}
\displaystyle S=\left\{ x \;\bigg|\; x \in U \text{かつ} P(Y=x)>\frac{1}{36} \right\} \\ \\
\displaystyle T=\left\{ x \;\bigg|\; x \in U \text{かつ} P(Z_1=x)>\frac{1}{36} \right\}
\end{array} \]
を定める.部分集合$S$と$T$の要素をそれぞれ列挙せよ.
(2)$Y$の値が$S$に属するという事象を$A$とし,$i=1,\ 2$に対して$Z_i$の値が$T$に属するという事象を$B_i$とする.次の問いに答えよ.

(i) $i=1,\ 2$に対し,等式$P(A \cap B_i)=P(A)P(B_i)$が成り立つかどうか,それぞれ調べよ.
(ii) 条件つき確率$P_A(B_1 \cap B_2)$の定義式をかき,その値を求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
表が出る確率が$a \ (0<a<\displaystyle\frac{1}{2})$,裏が出る確率が$1-a$のコインを1枚投げる試行を$n$回行う.ただし$n \geqq 2$とする.この$n$回の試行の結果,表が$2$回以上出る事象を$A_n$で表す.また$1$回目から$n$回目の試行が終わるまでに,[裏→表]の順で出ない事象を$B_n$で表す.つぎの問に答えよ.

(1)確率$P(A_n),\ P(B_n)$を求めよ.
(2)確率$P(A_n \cap B_n)$を求めよ.
(3)極限
\[ \lim_{n \to \infty} \frac{P(A_n)P(B_n)}{P(A_n \cap B_n)} \]
を求めよ.ただし,$0<r<1$をみたす$r$に対して,$\displaystyle\lim_{n \to \infty} nr^n = 0$となることを証明なしに用いてよい.
昭和大学 私立 昭和大学 2012年 第2問
以下の各問に答えよ.

(1)$\displaystyle \left( 2x^3-\frac{1}{4x^2} \right)^7$の展開式における$x^6$の項の係数を求めよ.
(2)$1,\ 1,\ 1,\ 1,\ 3,\ 3,\ 7$の$7$個の数字を使ってできる$7$桁の整数の個数を求めよ.
(3)$2$個のさいころを投げるとき,目の和が偶数である事象を$A$,少なくとも$1$個は$3$の倍数の目が出る事象を$B$とする.確率$P(A)$および$P(A \cap B)$をそれぞれ求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$xy$平面上で点$\mathrm{P}$は$x$軸上に,点$\mathrm{Q}$は$y$軸上に置かれ,点$\mathrm{P}$の$x$座標と点$\mathrm{Q}$の$y$座標はそれぞれ$-2$以上$2$以下の整数であるとする.点$\mathrm{P}$,$\mathrm{Q}$に対して次の操作を考える.
\begin{screen}
{\bf 操作} \\
点$\mathrm{P}$の座標が$(i,\ 0)$,点$\mathrm{Q}$の座標が$(0,\ j)$であるとき次の規則に従って$2$点$\mathrm{P}$,$\mathrm{Q}$を互いに独立に同時に処理する.

\mon[$(\mathrm{P}1)$] $-1 \leqq i \leqq 1$ならば点$\mathrm{P}$を$(i+1,\ 0)$または$(i-1,\ 0)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{P}2)$] $i=-2$ならば点$\mathrm{P}$を必ず$(-1,\ 0)$に移す.
\mon[$(\mathrm{P}3)$] $i=2$ならば点$\mathrm{P}$をそのままにしておく.
\mon[$(\mathrm{Q}1)$] $-1 \leqq j \leqq 1$ならば点$\mathrm{Q}$を$(0,\ j+1)$または$(0,\ j-1)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{Q}2)$] $j=-2$ならば点$\mathrm{Q}$を必ず$(0,\ -1)$に移す.
\mon[$(\mathrm{Q}3)$] $j=2$ならば点$\mathrm{Q}$をそのままにしておく.

\end{screen}
さて,$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている状態から始め,上の操作を$3$回繰り返し行う.

(1)$3$回の操作の後,点$\mathrm{P}$が$(1,\ 0)$に置かれている確率は$[あ]$であり,$(-1,\ 0)$に置かれている確率は$[い]$である.
(2)$xy$平面上で不等式$y>x$の表す領域を$A$,不等式$y>-x$の表す領域を$B$とする.各回の操作後に点$\mathrm{P}$が常に$A \cup B$内に置かれているという事象を$U$とし,各回の操作後に点$\mathrm{Q}$が常に$A \cup B$内に置かれているという事象を$V$とすると,事象$U \cup V$の確率は$[う]$である.
$xy$平面上で$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分の長さを$\mathrm{PQ}$とする.ただし$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている場合は$\mathrm{PQ}=0$とする.
(3)$3$回の操作を通じてちょうど$1$回だけ$\mathrm{PQ}=\sqrt{2}$となる確率は$[え]$である.
(4)$3$回の操作を通じた$\mathrm{PQ}$の最大値の期待値は$[お]$である.
昭和大学 私立 昭和大学 2012年 第2問
以下の各問に答えよ.

(1)$\displaystyle \left( 2x^3-\frac{1}{4x^2} \right)^7$の展開式における$x^6$の項の係数を求めよ.
(2)$1,\ 1,\ 1,\ 1,\ 3,\ 3,\ 7$の$7$個の数字を使ってできる$7$桁の整数の個数を求めよ.
(3)$2$個のさいころを投げるとき,目の和が偶数である事象を$A$,少なくとも$1$個は$3$の倍数の目が出る事象を$B$とする.確率$P(A)$および$P(A \cap B)$をそれぞれ求めよ.
スポンサーリンク

「事象」とは・・・

 まだこのタグの説明は執筆されていません。