タグ「中点」の検索結果

37ページ目:全364問中361問~370問を表示)
神奈川大学 私立 神奈川大学 2010年 第2問
放物線$C:y=x^2$について,次の問いに答えよ.

(1)点$(1,\ 1)$を通り傾きが$a$である直線の方程式を求めよ.
(2)$(1)$で求めた直線と放物線$C$の共有点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(3)線分$\mathrm{PQ}$の中点の軌跡の方程式を求めよ.ただし,$\mathrm{P}$と$\mathrm{Q}$が一致するとき,線分$\mathrm{PQ}$の中点とは$\mathrm{P}$を意味するものとする.
(4)$(3)$で求めた軌跡,放物線$C$および$y$軸で囲まれた図形の面積を求めよ.
日本福祉大学 私立 日本福祉大学 2010年 第3問
$\triangle \mathrm{ABC}$において線分$\mathrm{AB}$を$3:2$に内分する点を$\mathrm{M}$とし,線分$\mathrm{AC}$の中点を$\mathrm{N}$とする.また,$2$直線$\mathrm{CM}$と$\mathrm{BN}$の交点を$\mathrm{P}$とし,直線$\mathrm{AP}$と辺$\mathrm{BC}$の交点を$\mathrm{Q}$とする.

(1)$\overrightarrow{\mathrm{CM}}$を,$\overrightarrow{\mathrm{CA}}$と$\overrightarrow{\mathrm{CB}}$で表せ.
(2)$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{AQ}}$をそれぞれ,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$で表せ.
首都大学東京 公立 首都大学東京 2010年 第3問
同一平面上にない$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}} = \overrightarrow{a},\ \overrightarrow{\mathrm{OB}} = \overrightarrow{b},\ \overrightarrow{\mathrm{OC}} = \overrightarrow{c}$とおく.点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を含む平面上に点$\mathrm{D}$をとる.このとき,以下の問いに答えなさい.

(1)$\overrightarrow{\mathrm{OD}} = x \overrightarrow{a} +y \overrightarrow{b} +z \overrightarrow{c}$と表すとき,実数$x,\ y,\ z$が満たすべき条件を求めなさい.
(2)$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$は四角形$\mathrm{ABCD}$をなし,次の条件

$\overrightarrow{a} \perp \overrightarrow{b},\ \overrightarrow{b} \perp \overrightarrow{c},\ \overrightarrow{c} \perp \overrightarrow{a},$
$\displaystyle |\overrightarrow{a}| = |\overrightarrow{b}|= |\overrightarrow{c}|= 1,\quad |\overrightarrow{\mathrm{OD}}| = \sqrt{\frac{17}{2}}$

を満たすとする.その辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$の中点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とし,四角形$\mathrm{PQRS}$が長方形をなすとする.ただし,四角形$\mathrm{PQRS}$は四角形$\mathrm{ABCD}$に含まれるものとする.このとき,$x,\ y,\ z$の値を求めなさい.
高知工科大学 公立 高知工科大学 2010年 第1問
$\angle \mathrm{C}$を直角とし斜辺の長さが$1$である直角三角形$\mathrm{ABC}$において,$\angle \mathrm{A}=\theta$とする.辺$\mathrm{AC}$の中点を$\mathrm{M}$とし,線分$\mathrm{CM}$上に点$\mathrm{Q}$をとり,$\mathrm{CQ}=x$とする.点$\mathrm{Q}$を通り辺$\mathrm{BC}$に平行な直線と辺$\mathrm{AB}$との交点を$\mathrm{P}$とし,線分$\mathrm{PQ}$を折り目として,$\triangle \mathrm{APQ}$を元の三角形に折り重ねる.折り重ねた$\triangle \mathrm{A}^\prime \mathrm{PQ}$と$\triangle \mathrm{ABC}$が重なってできる図形の面積を$T$とする.次の各問に答えよ.

(1)線分$\mathrm{PQ}$の長さを$\theta$と$x$で表せ.
(2)面積$T$を$\theta$と$x$で表せ.
(3)面積$T$の値が最大となるときの$\triangle \mathrm{ABC}$の形状と点$\mathrm{Q}$の位置を求めよ.
(図は省略)
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。