タグ「中点」の検索結果

36ページ目:全364問中351問~360問を表示)
東京海洋大学 国立 東京海洋大学 2010年 第4問
三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{Q}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{R}$,辺$\mathrm{AB}$の中点を$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{PR}} \perp \overrightarrow{\mathrm{QS}}$となるための条件を$|\overrightarrow{a}|$,$|\overrightarrow{b}|$と内積$\overrightarrow{a} \cdot \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{PR}} \perp \overrightarrow{\mathrm{QS}}$かつ$|\overrightarrow{a}|=1$のとき,$|\overrightarrow{b}|$のとりうる値の範囲を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第5問
半径1の円Oの中心Oを通る直線上に$\text{OA}=2$となるように点Aを定める.点Aを通り,円Oと2点B,Cで交わるような直線を引き,$\text{AB}=\text{BC}$となるようにしたい.2直線のなす角$\theta = \angle \text{OAB} \ (0^\circ <\theta<30^\circ)$をどのように定めればよいか.次の手順で検討せよ.

(1)線分BCの中点をMとして,線分AMの長さを$\cos \theta$を用いて表せ.
(2)同様に,線分BMの長さを$\cos \theta$を用いて表せ.
(3)$\text{AB}=\text{BC}$のとき$\text{AM}= 3\text{BM}$である.これを利用して$\cos \theta$の値を求めよ.
北海学園大学 私立 北海学園大学 2010年 第4問
三角形$\mathrm{ABC}$において$\mathrm{AB}=2$,$\mathrm{CA}=3$とする.この三角形の外接円の中心を$\mathrm{O}$,辺$\mathrm{AB}$と$\mathrm{CA}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.また,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OA}}=s \overrightarrow{a}+t \overrightarrow{b}$,$\angle \mathrm{CAB}=\theta$とする.ただし,$s,\ t$は実数とする.

(1)ベクトル$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$の式で表せ.また,内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$\theta$の式で表せ.
(2)$\mathrm{BC}=4$のとき,$\cos \theta$,$s$,$t$の値をそれぞれ求めよ.
(3)$\displaystyle s=\frac{2}{3}$のとき,$t$と$\cos \theta$の値を求めよ.
北海学園大学 私立 北海学園大学 2010年 第6問
四角形$\mathrm{ABCD}$において$\angle \mathrm{BAC}=\angle \mathrm{CAD}=\theta$とする.線分$\mathrm{BD}$の中点を$\mathrm{E}$とし,線分$\mathrm{BD}$と線分$\mathrm{AC}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$,$|\overrightarrow{a}|=a$,$|\overrightarrow{b}|=b$,$\overrightarrow{\mathrm{AC}}=x \overrightarrow{a}+y \overrightarrow{b}$とするとき,次の問いに答えよ.ただし,$x,\ y$は実数とし,$x \neq y$とする.

(1)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$の式で表せ.また,$\overrightarrow{\mathrm{EC}}$を$x$,$y$,$\overrightarrow{a}$,$\overrightarrow{b}$の式で表せ.
(2)$\overrightarrow{\mathrm{AF}}$を$a$,$b$,$\overrightarrow{a}$,$\overrightarrow{b}$の式で表せ.さらに,$y$を$a,\ b,\ x$の式で表せ.
(3)$\angle \mathrm{CED}=90^\circ$であるとき,$\cos 2\theta$を$a,\ b,\ x,\ y$の式で表せ.
北海学園大学 私立 北海学園大学 2010年 第5問
四角形$\mathrm{ABCD}$において$\angle \mathrm{BAC}=\angle \mathrm{CAD}=\theta$とする.線分$\mathrm{BD}$の中点を$\mathrm{E}$とし,線分$\mathrm{BD}$と線分$\mathrm{AC}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$,$|\overrightarrow{a}|=a$,$|\overrightarrow{b}|=b$,$\overrightarrow{\mathrm{AC}}=x \overrightarrow{a}+y \overrightarrow{b}$とするとき,次の問いに答えよ.ただし,$x,\ y$は実数とし,$x \neq y$とする.

(1)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$の式で表せ.また,$\overrightarrow{\mathrm{EC}}$を$x$,$y$,$\overrightarrow{a}$,$\overrightarrow{b}$の式で表せ.
(2)$\overrightarrow{\mathrm{AF}}$を$a$,$b$,$\overrightarrow{a}$,$\overrightarrow{b}$の式で表せ.さらに,$y$を$a,\ b,\ x$の式で表せ.
(3)$\angle \mathrm{CED}=90^\circ$であるとき,$\cos 2\theta$を$a,\ b,\ x,\ y$の式で表せ.
自治医科大学 私立 自治医科大学 2010年 第11問
三角形の$3$辺の中点が$(-2,\ -1)$,$(3,\ 2)$,$(-1,\ 5)$であるとき,この三角形の$3$つの頂点のうち,最も大きい$y$座標をもつ頂点の$y$座標の値を求めよ.
南山大学 私立 南山大学 2010年 第2問
座標平面上に直線$\ell:y=mx-4m$と放物線$\displaystyle C:y=\frac{1}{4}x^2$がある.$m$は,$\ell$と$C$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるような値をとるとする.また,線分$\mathrm{PQ}$の中点を$\mathrm{M}$とする.

(1)$\ell$は$m$の値にかかわりなく,ある定点を通る.この点の座標を求めよ.
(2)$m$のとりうる値の範囲を求めよ.
(3)$\mathrm{M}$の軌跡を求め,座標平面上にそれを図示せよ.
獨協医科大学 私立 獨協医科大学 2010年 第3問
$1$辺の長さが$1$である正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$の中点を$\mathrm{P}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{Q}$,辺$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{R}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.

(1)$\displaystyle \overrightarrow{\mathrm{PQ}}=-\frac{[ ]}{[ ]} \overrightarrow{a}+\frac{[ ]}{[ ]} \overrightarrow{b}$,$\displaystyle |\overrightarrow{\mathrm{PQ}}|=\frac{\sqrt{[ ]}}{[ ]}$

$\displaystyle \overrightarrow{\mathrm{PR}}=-\frac{[ ]}{[ ]} \overrightarrow{a}+\frac{[ ]}{[ ]} \overrightarrow{c}$,$\displaystyle |\overrightarrow{\mathrm{PR}}|=\frac{\sqrt{[ ]}}{[ ]}$

である.
(2)$\triangle \mathrm{PQR}$の面積は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$である.

(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,線分$\mathrm{OG}$と平面$\mathrm{PQR}$の交点を$\mathrm{D}$とする.このとき,$\displaystyle \mathrm{OG}:\mathrm{OD}=1:\frac{[ ]}{[ ]}$である.
津田塾大学 私立 津田塾大学 2010年 第3問
放物線$y=x^2$を$C$とし,$C$上の$2$点$\mathrm{P}(a,\ a^2)$,$\mathrm{Q}(b,\ b^2) (a<b)$を考える.$C$と線分$\mathrm{PQ}$で囲まれた部分の面積を$S$とし,$\mathrm{PQ}$の中点$\mathrm{M}$から$x$軸に下ろした垂線と$C$との交点を$\mathrm{H}$とする.次の問いに答えよ.

(1)$\triangle \mathrm{MQH}$の面積を求めよ.
(2)$\triangle \mathrm{PQH}$の面積を$T$とするとき,$\displaystyle \frac{T}{S}$の値を求めよ.
東京女子大学 私立 東京女子大学 2010年 第1問
$a$は$0 \leqq a \leqq 1$を満たす実数とする.関数$y=|x-a|$のグラフと円周$x^2+y^2=1$の$2$交点の中点を$\mathrm{M}$とする.

(1)$\mathrm{M}$の座標を$a$を用いて表せ.
(2)$a$が$0 \leqq a \leqq 1$の範囲を動くときの$\mathrm{M}$の軌跡を図示せよ.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。