タグ「中点」の検索結果

35ページ目:全364問中341問~350問を表示)
熊本大学 国立 熊本大学 2010年 第2問
曲線$C_1:y=x^2$上の点A$(a,\ a^2)$における接線が曲線$C_2:y=x^2-4$と交わる点をB,Cとする.ただし,Bの$x$座標はCの$x$座標より小さいとする.以下の問いに答えよ.

(1)線分BCの中点MおよびCの座標を$a$を用いて表せ.
(2)Mを通り$y$軸に平行な直線,線分MCおよび曲線$C_2$で囲まれた部分の面積を求めよ.
佐賀大学 国立 佐賀大学 2010年 第2問
座標平面上で,直線$\ell:y=mx$に関する対称移動によって,点P$(x,\ y)$が点Q$(x^\prime,\ y^\prime)$に移ったとする.ただし,$m$は0でない定数とし,点Pは$\ell$上にないとする.このとき,次の問いに答えよ.

(1)線分PQの中点が$\ell$上にあることと,線分PQが$\ell$と垂直に交わっていることを利用して
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=\frac{1}{1+m^2} \left( \begin{array}{cc}
1-m^2 & 2m \\
2m & m^2-1
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
が成り立つことを示せ.
(2)直線$\displaystyle y=\frac{1}{\sqrt{3}}x,\ y=-\frac{1}{\sqrt{3}}x$に関する対称移動を表す1次変換をそれぞれ$f,\ g$とする.このとき,合成変換$g \circ f$および$f \circ g$を表す行列を求めよ.
(3)(2)で求めた2つの行列は,原点Oを中心とし,角$\theta$だけ回転する1次変換を表す行列である.それぞれの$\theta$を求めよ.
山形大学 国立 山形大学 2010年 第2問
$xy$平面上に直線$\ell:y=x+2$と曲線$C:y=1-x^2$がある.直線$\ell$上を動く点Pから曲線$C$に異なる2本の接線を引き,接点をQ,Rとする.線分QRの中点をMとするとき,次の問いに答えよ.

(1)点Pの$x$座標を$t$とし,2点Q,Rの$x$座標をそれぞれ$\alpha,\ \beta$とするとき,$\alpha+\beta=2t$および$\alpha\beta=-(t+1)$を示せ.
(2)点Mの軌跡は曲線$y=-2x^2-x$であることを示せ.
(3)点Mの軌跡と$x$軸で囲まれた図形の面積を求めよ.
山形大学 国立 山形大学 2010年 第2問
1辺の長さが2の正三角形ABCがある.辺ABの中点をP,線分PBの中点をQ,辺BCを$2:1$に内分する点をR,線分PRと線分CQの交点をSとする.さらに,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.このとき,次の問に答えよ.

(1)内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.
(2)$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AS}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$|\overrightarrow{\mathrm{AS}}|$の値を求めよ.
(5)三角形APSの面積を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2010年 第1問
平面上の点P$_n$,Q$_n \ (n=1,\ 2,\ 3,\ \cdots)$を次のように定める. \\
P$_1(0,\ 0)$,Q$_1(0,\ 1)$とする. P$_n$,Q$_n$が定められているとして,Q$_n$を中心にP$_n$を時計回りに$\displaystyle \frac{\pi}{2}$回転させた点をP$_{n+1}$とする.さらに,P$_{n+1}$を中心にQ$_n$を反時計回りに$\displaystyle \frac{\pi}{2}$回転させた点とP$_{n+1}$の中点をQ$_{n+1}$とする.このとき,以下の問いに答えなさい.

(1)P$_2$,P$_3$の座標を求めなさい.
(2)すべてのP$_n$を通る直線の方程式を求めなさい.
(3)線分P$_n$Q$_n$の長さを$n$の式で表しなさい.
(4)P$_n$の$x$座標を$x_n$とおく.$x_n$を$n$の式で表しなさい.
(5)$\displaystyle \lim_{n \to \infty}x_n$を求めなさい.
滋賀医科大学 国立 滋賀医科大学 2010年 第2問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{BC}},\ \overrightarrow{\mathrm{OB}} \perp \overrightarrow{\mathrm{BC}}$とする.

(1)三角形$\mathrm{OAB},\ \mathrm{OAC},\ \mathrm{OBC},\ \mathrm{ABC}$はすべて直角三角形であることを示せ.
(2)$\mathrm{OC}$の中点$\mathrm{M}$から平面$\mathrm{ABC}$に下ろした垂線の足を$\mathrm{N}$とする.
\[ \overrightarrow{\mathrm{CN}}=s \overrightarrow{\mathrm{CA}}+t \overrightarrow{\mathrm{CB}} \]
と表すときの$s,\ t$を,長さ$\mathrm{OA},\ \mathrm{OB}$で表せ.
千葉大学 国立 千葉大学 2010年 第7問
$\triangle \mathrm{ABC}$は,1辺の長さが1の正三角形で,$t$は正の実数とする.$\overrightarrow{b}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{AC}}$とおく.直線$\mathrm{AB},\ \mathrm{AC}$上にそれぞれ点$\mathrm{D},\ \mathrm{E}$があり,$\overrightarrow{\mathrm{AD}}=t \overrightarrow{b}$,$\overrightarrow{\mathrm{AE}}=t \overrightarrow{c}$をみたしている.正三角形$\triangle \mathrm{ADE}$の重心を$\mathrm{G}$,線分$\mathrm{BE}$の中点を$\mathrm{M}$とする.

(1)内積$\overrightarrow{\mathrm{MC}} \cdot \overrightarrow{\mathrm{MG}}$を計算せよ.
(2)$t$が正の実数全体を動くとき,$\triangle \mathrm{CGM}$の面積を最小にする$t$の値と,そのときの面積を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第1問
平面上に大きさが1のベクトル$\overrightarrow{a}$と大きさが2のベクトル$\overrightarrow{b}$があり,そのなす角が$60^\circ$である.いま,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=k \overrightarrow{a}+\overrightarrow{b} \ (k \neq -1)$となる$\triangle \mathrm{ABC}$がある.$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$の中点を$\mathrm{M}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{N}$とし,線分$\mathrm{AN}$と線分$\mathrm{CM}$の交点を$\mathrm{P}$とする.また,点$\mathrm{Q}$は2点$\mathrm{A},\ \mathrm{C}$を通る直線上にあり,$\overrightarrow{\mathrm{PQ}} \perp \overrightarrow{\mathrm{AB}}$をみたす.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{AQ}}=l \overrightarrow{\mathrm{AC}}$をみたす$l$を$k$を用いて表せ.
(3)点$\mathrm{Q}$が辺$\mathrm{AC}$上にあるとき,$k$の値の範囲を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第4問
空間上に相異なる$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$は互いに直交している.次の問いに答えよ.

(1)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$からの距離が全て等しくなる点がただ一つ存在する.この点を$\mathrm{G}$とする.線分$\mathrm{OA}$の中点を$\mathrm{M}$とする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{MG}}$が直交することを用いて,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OG}}=\frac{1}{2}|\overrightarrow{\mathrm{OA}}|^2 \]
となることを示せ.ただし,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OG}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OG}}$の内積とする.
(2)(1)を用いて,
\[ \overrightarrow{\mathrm{OG}}=\frac{1}{2}(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}) \]
が成り立つことを示せ.
(3)$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{P}(1,\ \sqrt{3},\ 0)$,$\displaystyle \mathrm{Q} \left( -\frac{\sqrt{6}}{2},\ \frac{\sqrt{2}}{2},\ \sqrt{2} \right)$,$\displaystyle \mathrm{R} \left( \frac{\sqrt{6}}{4},\ -\frac{\sqrt{2}}{4},\ \frac{\sqrt{2}}{2} \right)$とする.このとき線分$\mathrm{OP}$,$\mathrm{OQ}$,$\mathrm{OR}$は互いに直交していることを示せ.また,$4$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る球面の半径を求めよ.
鳴門教育大学 国立 鳴門教育大学 2010年 第4問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の中点をそれぞれ,$\mathrm{L}$,$\mathrm{M}$,$\mathrm{N}$とする.頂点$\mathrm{A}$から辺$\mathrm{BC}$またはその延長上に下ろした垂線を$\mathrm{AH}$とする.次を証明せよ.

(1)$\angle \mathrm{LHN}=\angle \mathrm{A}$
(2)$4$点$\mathrm{L}$,$\mathrm{M}$,$\mathrm{N}$,$\mathrm{H}$は同一円周上にある.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。