タグ「中点」の検索結果

34ページ目:全364問中331問~340問を表示)
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
名古屋大学 国立 名古屋大学 2010年 第1問
座標空間に8点
\begin{eqnarray}
& & \text{O}(0,\ 0,\ 0),\ \text{P}(1,\ 0,\ 0),\ \text{Q}(1,\ 1,\ 0),\ \text{R}(0,\ 1,\ 0), \nonumber \\
& & \text{A}(0,\ 0,\ 1),\ \text{B}(1,\ 0,\ 1),\ \text{C}(1,\ 1,\ 1),\ \text{D}(0,\ 1,\ 1) \nonumber
\end{eqnarray}
をとり,線分BCの中点をMとする.線分RD上の点をN$(0,\ 1,\ t)$とし,3点 O,M,Nを通る平面と線分PDおよび線分PBとの交点をそれぞれK,Lとする.

(1)Kの座標を$t$で表せ.
(2)四面体OKLPの体積を$V(t)$とする.Nが線分RD上をRからDまで動くとき,$V(t)$の最大値と最小値およびそれらを与える$t$の値をそれぞれ求めよ.
信州大学 国立 信州大学 2010年 第1問
次の問いに答えよ.

(1)2次方程式$x^2 + (2a-1)x+a^2-3a-4 = 0$が少なくとも1つ正の解をもつような実数の定数$a$の値の範囲を求めよ.
(2)不等式$|2 \sin (x+y)| \geqq 1$の表す点$(x,\ y)$の領域を,$0 \leqq x \leqq \pi,\ 0 \leqq y \leqq \pi$の範囲で図示せよ.
(3)座標平面上に3点A$(2,\ 5)$,B$(1,\ 3)$,P$_1(5,\ 1)$をとる.まず,点P$_1$と点Aの中点をQ$_1$,点Q$_1$と点Bの中点をP$_2$とする.次に,点 P$_2$と点Aの中点をQ$_2$,点Q$_2$と点Bの中点をP$_3$とする.以下同様に繰り返し,点P$_n$と点Aの中点をQ$_n$,点Q$_n$と点Bの中点をP$_{n+1} \ (n =1,\ 2,\ 3,\ \cdots)$とする.点P$_n$の$x$座標を$a_n$とするとき,$a_n$を$n$の式で表し,$\displaystyle \lim_{n \to \infty} a_n$を求めよ.
愛媛大学 国立 愛媛大学 2010年 第2問
直線$y=a(x+2)$と円$x^2+y^2-4x=0$は異なる2点P,Qで交わっているとする.また,線分PQの中点をRとする.

(1)定数$a$の値の範囲を求めよ.
(2)Rの座標を$a$を用いて表せ.
(3)原点Oと点Rの距離を求めよ.
(4)$a$の値が(1)で求めた範囲を動くとき,点Rの軌跡を求めよ.
和歌山大学 国立 和歌山大学 2010年 第3問
正三角形OABにおいて,辺AB,AOを$1:3$に内分する点をそれぞれP,Qとし,辺ABの中点をRとする.直線PQ上の点Sを$\text{OB} \perp \text{OS}$となるように定める.また,直線BQ上の点Tを$\text{OT} \perp \text{BQ}$となるように定める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OT}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)3点R,S,Tが同一直線上にあることを示せ.
和歌山大学 国立 和歌山大学 2010年 第3問
正三角形OABにおいて,辺AB,AOを$1:3$に内分する点をそれぞれP,Qとし,辺ABの中点をRとする.直線PQ上の点Sを$\text{OB} \perp \text{OS}$となるように定める.また,直線BQ上の点Tを$\text{OT} \perp \text{BQ}$となるように定める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OT}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)3点R,S,Tが同一直線上にあることを示せ.
高知大学 国立 高知大学 2010年 第2問
三角形OABにおいて,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,点CとDを$\overrightarrow{\mathrm{OC}}=2\overrightarrow{a},\ \overrightarrow{\mathrm{OD}}=3\overrightarrow{b}$によりそれぞれ定める.また,線分ADとBCの交点をEとする.このとき,次の問いに答えよ.

(1)$\text{AE}:\text{AD}=t:1 \ (0<t<1)$とするとき,$\overrightarrow{\mathrm{OE}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\text{BE}:\text{BC}=s:1 \ (0<s<1)$とするとき,$\overrightarrow{\mathrm{OE}}$を$s,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)(1)と(2)を利用することにより,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(4)OE,AB,CDの中点をそれぞれP,Q,Rとするとき,$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{PR}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(5)$\displaystyle \frac{\text{PR}}{\text{PQ}}$の値を求めよ.
長崎大学 国立 長崎大学 2010年 第2問
正三角形ABCにおいて,線分ABを$2:1$に内分する点をD,線分BCの中点をE,点Eから直線ABに引いた垂線とABの交点をHとする.また,$\overrightarrow{\mathrm{HB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{HE}}=\overrightarrow{b}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AH}},\ \overrightarrow{\mathrm{DB}}$を$\overrightarrow{a}$を用いて表せ.
(2)$\overrightarrow{\mathrm{CD}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分HE上の点Fが$\overrightarrow{\mathrm{AF}} \perp \overrightarrow{\mathrm{CD}}$を満たすとき,Fは線分EHを$2:1$に内分することを示せ.
岡山大学 国立 岡山大学 2010年 第3問
原点を中心とする半径1の円を$C_1$とし,原点を中心とする半径$\displaystyle \frac{1}{2}$の円を$C_2$とする.$C_1$上に点P$_1(\cos \theta,\ \sin \theta)$があり,また,$C_2$上に点P$_2 \displaystyle (\frac{1}{2} \cos 3\theta,\ \frac{1}{2} \sin 3\theta)$がある.ただし,$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$であるとする.線分P$_1$P$_2$の中点をQとし,点Qの原点からの距離を$r(\theta)$とする.このとき,次の問いに答えよ.

(1)点Qの$x$座標の取りうる範囲を求めよ.
(2)点Qが$y$軸上にあるときの$\theta$の値を$\alpha$とする.このとき,$\alpha$および定積分
\[ \int_0^\alpha \{r(\theta)\}^2 \, d\theta \]
を求めよ.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。