タグ「中点」の検索結果

26ページ目:全364問中251問~260問を表示)
早稲田大学 私立 早稲田大学 2012年 第2問
三角形OABにおいてOA$=4$,OB$=5$,AB$=7$とする.点Pは辺OAの中点,点Qは辺ABを$2:1$に内分する点とする.さらに点Rは辺OB上にあり$\angle$PQR$=90^\circ$である.このとき,
\[ \text{OR} = \frac{[オ]}{[カ]} \text{OB} \]
である.ただし,[カ]はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100\ (x \geqq 0 \text{かつ} y \geqq 0)$を$C$とする.点P,Qは$C$上にあり,線分PQの中点をRとする.ただし,点Pと点Qが一致するときは,点Rは点Pに等しいものとする.

(1)点Pの座標が$(6,\ 8)$であり,点Qが$C$上を動くとき,点Rの軌跡は,
\[ \left( x-[キ]\right)^2 + \left(y-[ク]\right)^2 = [ケ],\]
\[ [コ] \leqq x \leqq [サ], \ [シ] \leqq y \leqq [ス] \]
である.
(2)点P,Qが$C$上を自由に動くとき,点Rの動く範囲の面積は,
\[ \frac{[セ]}{[ソ]} \pi + [タ] \]
である.ただし,[ソ]はできるだけ小さな自然数で答えること.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$\mathrm{ABCDE}$を$1$辺の長さが$1$の正方形$\mathrm{ABCD}$を底面とし,$4$個の正三角形を側面とする正四角錐とする.
(図は省略)

(1)$\triangle \mathrm{CDE}$の重心を$\mathrm{G}$とする.ベクトル$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AG}} = [セ]$となる.
(2)$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}$が平面$\alpha$上の任意のベクトルと垂直なとき,$\overrightarrow{p}$は平面$\alpha$と垂直であるという.$\overrightarrow{p} = a\, \overrightarrow{\mathrm{AB}} + b\, \overrightarrow{\mathrm{AD}} + c\, \overrightarrow{\mathrm{AE}}\ (a,\ b,\ c\text{は実数})$が$\triangle \mathrm{CDE}$を含む平面と垂直なとき,$a:b:c=[ソ]$である.よって,$|\overrightarrow{p}|=1$かつ$\overrightarrow{p} \cdot \overrightarrow{\mathrm{AD}} > 0$となるように$a,\ b,\ c$を定めると,$\overrightarrow{p} = [タ]$となる.
(3)正四角錐$\mathrm{ABCDE}$の$\triangle \mathrm{CDE}$に,各辺の長さが$1$の正四面体$\mathrm{CDEF}$を貼り付ける.ベクトル$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AF}}=[チ]$となる.また,$\mathrm{H}$を辺$\mathrm{EC}$の中点とすると,$\overrightarrow{\mathrm{HA}} \cdot \overrightarrow{\mathrm{HF}}= [ツ]$であり,$\triangle \mathrm{AHF}$の面積は[テ]である.
明治大学 私立 明治大学 2012年 第1問
次の各問の$[ ]$にあてはまる数または式を入れよ.

(1)$\sin \theta + \cos \theta = \displaystyle\frac{1}{2}$のとき,$\sin \theta \cos \theta = - \displaystyle\frac{[ア]}{[イ]}$である.     
(2)不等式$|5x-41|<2x+1$を満たす整数$x$の最大値は[ア][イ]であり,最小値は[ウ]である.
(3)$(x-3y+z)^6$の展開式における,$x^2y^2z^2$の項の係数は[ア][イ][ウ]である.
(4)四面体$\mathrm{ABCD}$において,$2$辺$\mathrm{AC}$,$\mathrm{BD}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.また,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とする.このとき,

(i) $\overrightarrow{\mathrm{MN}}$を$\overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$で表すと,$\overrightarrow{\mathrm{MN}}=[ア]$となる.
(ii) $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CD}} = [イ]\overrightarrow{\mathrm{MN}}$である.
上智大学 私立 上智大学 2012年 第2問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,
\[ \mathrm{PA} = \mathrm{PB} = \mathrm{PC} = \mathrm{PD} = \sqrt{5} \]
である四角錐$\mathrm{PABCD}$を考える.
(図は省略)

(1)四角錐$\mathrm{PABCD}$のすべての面に接する球の中心を$\mathrm{O}$とし,$\mathrm{P}$から底面$\mathrm{ABCD}$に垂線$\mathrm{PH}$を下ろすとき
\[ \mathrm{PH}=[テ],\quad \mathrm{OH}=\frac{[ト]}{[ナ]} \]
である.
(2)辺$\mathrm{PB}$の中点を$\mathrm{Q}$,辺$\mathrm{PD}$の中点を$\mathrm{R}$とする.$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{C}$を含む平面と辺$\mathrm{PA}$との交点を$\mathrm{S}$とする.このとき
\[ \mathrm{SP}=\frac{[ニ]}{[ヌ]} \sqrt{[ネ]} \]
である.$\mathrm{S}$から線分$\mathrm{AC}$に垂線$\mathrm{ST}$を下ろすとき
\[ \mathrm{ST}=\frac{[ノ]}{[ハ]},\quad \mathrm{CT}=\frac{[ヒ]}{[フ]} \]
である.さらに,四角形$\mathrm{CRSQ}$の面積は
\[ \frac{[ヘ]}{[ホ]} \sqrt{[マ]} \]
である.
立教大学 私立 立教大学 2012年 第2問
座標平面上に$2$つの放物線$C_1:y=x^2$と$C_2:y=-x^2+4x+6$がある.$2$つの放物線$C_1$と$C_2$の交点を$\mathrm{P}$,$\mathrm{Q}$とする.ただし,$\mathrm{P}$の$x$座標の値は$\mathrm{Q}$の$x$座標の値よりも小さいものとする.また,放物線$C_2$の頂点を$\mathrm{R}$とし,原点を$\mathrm{O}$とする.このとき,次の問(1)~(3)に答えよ.

(1)$2$点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(2)線分$\mathrm{OR}$と,$2$つの放物線$C_1$,$C_2$とで囲まれる部分のうち,点$\mathrm{P}$を含む部分の面積を$S$とする.$S$を求めよ.
(3)線分$\mathrm{OR}$の中点を$\mathrm{M}$とする.線分$\mathrm{OM}$と線分$\mathrm{MQ}$と$C_1$とで囲まれる部分の面積を$T$とする.$T$を求めよ.
法政大学 私立 法政大学 2012年 第4問
(経営学部III)および(人間環境学部III)\\
\quad 1辺の長さが1の立方体ABCD-EFGHにおいて,2辺DH,GHの中点をそれぞれM,Nとおく.さらに,3つの線分AC,AM,ANが平面BDEと交わる点をそれぞれP,Q,Rとおく.

(1)ベクトル$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表せ.
(2)ベクトル$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表せ.
(3)三角形PQRの面積を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$1$から$9$までの番号が書かれた$9$個のポールが袋に入っている.この袋の中から$1$個のボールを取り出し,その番号を確認してからもとに戻す試行を考える.

(i) この試行を$3$回行ったとき,同じ番号のボールを少なくとも$2$回取り出す確率は$\displaystyle\frac{[ア][イ]}{[ウ][エ]}$である.

(ii) この試行を$2$回行ったとき,取り出したボールの番号の差が$1$以下となる確率は$\displaystyle\frac{[オ][カ]}{[キ][ク]}$である.

(2)$t$を$t>1$をみたす実数とし,$xy$平面上で次の方程式で表される$3$直線$\ell_1,\ \ell_2,\ \ell_3$を考える.
\[ \begin{array}{l}
\ell_1:tx-y=0 \\
\ell_2:x-ty-t^2=0 \\
\ell_3:x+ty-t^2=0
\end{array} \]
$\ell_1,\ \ell_2,\ \ell_3$で囲まれる三角形の面積を$S(t)$とし,この三角形の$x$軸の上側の部分の面積を$S_1(t)$,$x$軸の下側の部分の面積を$S_2(t)$とする.

(i) $S_2(t)=2S_1(t)$となる$t$の値は$t=\sqrt{[ケ]}$である.
(ii) $\displaystyle S(t)=\frac{t^{[コ]}}{t^{[サ]}-[シ]}$であり,$S(t)$を$t$で微分して符号を調べることにより,$S(t)$は$\displaystyle t=\left( \frac{[ス]}{[セ]} \right)^{\frac{[ソ]}{[タ]}}$で最小値をとることがわかり,最小値は
\[ \frac{7}{[チ]} \left( \frac{[ツ]}{[テ]} \right)^{\frac{[ト]}{[ナ]}} \]
となる.

(3)$p$を実数とし,方程式$\displaystyle x^3-px^2-\frac{13}{4}x+\frac{15}{8}=0$は$3$つの実数解$a,\ b,\ c (a>b>c)$をもつとする.$a+c=2b$をみたすとき,
\[ a=\frac{[ニ]}{[ヌ]},\quad b=\frac{[ネ]}{[ノ]},\quad c=\frac{[ハ]}{[ヒ]},\quad p=\frac{[フ]}{[ヘ]} \]
である.
(4)$\mathrm{O}$を原点とする空間内に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.
\[ |\overrightarrow{\mathrm{OA}}|=2,\quad |\overrightarrow{\mathrm{OB}}|=1,\quad |\overrightarrow{\mathrm{OC}}|=3 \]
であり,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$のどの$2$つのなす角も$\displaystyle \frac{\pi}{3}$であるとする.$\mathrm{G}$を$\triangle \mathrm{ABC}$の重心とし,$\mathrm{M}$を$\mathrm{AB}$の中点,$\mathrm{N}$を$\mathrm{BC}$の中点,$\mathrm{L}$を$\mathrm{MN}$の中点とする.このとき,
\[ |\overrightarrow{\mathrm{OG}}|=\frac{[ホ]}{[マ]},\quad |\overrightarrow{\mathrm{GL}}|=\frac{\sqrt{[ミ][ム]}}{[メ][モ]} \]
である.
立教大学 私立 立教大学 2012年 第3問
座標平面上に2点A$(-1,\ 3)$,B$(5,\ 15)$と直線$\ell$が与えられており,2点A,Bは直線$\ell$に関して対称な位置にある.直線$\ell$が$y$軸と交わる点をCとし,線分ABの中点をMとする.線分MA上に,点Mと異なる点Pをとる.このとき次の問(1)~(4)に答えよ.

(1)点Mの座標と直線ABの方程式を求めよ.
(2)直線$\ell$の方程式を求めよ.
(3)点Pの$x$座標を$t$とする.$\angle \text{PCM}=\theta$とおくとき,$\cos \theta$を$t$を用いて表せ.
(4)直線$\ell$に関して,点Pと対称な点をQとする.三角形PCQが正三角形となるとき,$t$の値を求めよ.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~サに当てはまる数または式を記入せよ.

(1)$\displaystyle x=\frac{\sqrt{5}-1}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{\sqrt{5}-1}$のとき,$x^3+y^3$の値は$[ア]$である.
(2)互いに異なる定数$a,\ b,\ c$が$\displaystyle \frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}$を満たすとき,$\displaystyle \frac{(b+c)(c+a)(a+b)}{abc}$のとる値は$[イ]$である.ただし,$abc \neq 0$とする.
(3)白玉$3$個と黒玉$3$個が入っている袋から玉を$1$個取り出し,色を調べてもとに戻す.この試行を$3$回繰り返すとき,白玉を$2$回取り出す確率は$[ウ]$である.
(4)整式$P(x)$を$x-1$で割った余りが$-2$,$x-2$で割った余りが3,$x-3$で割った余りが8ならば,$P(x)$を$(x-1)(x-2)(x-3)$で割った余りは$[エ]$である.
(5)数列$\{a_n\}$は$a_1=-7$と漸化式$2a_{n+1}=3a_n+8 \ (n=1,\ 2,\ 3,\ \cdots)$で定められている.この数列の一般項は$a_n=[オ]$である.
(6)平行四辺形ABCDにおいて,辺ABを$2:1$に内分する点をE,辺BCの中点をF,辺CDの中点をGとする.線分CEと線分FGの交点をHとすると,$\overrightarrow{\mathrm{AH}}=[カ]\overrightarrow{\mathrm{AB}}+[キ]\overrightarrow{\mathrm{AD}}$となる.
(7)関数$f(x)=x^2-2ax+a+6$がすべての実数$x$に対して$f(x)>0$を満たすならば,定数$a$の値の取りうる範囲は,$[ク]<a<[ケ]$となる.
(8)関数$f(x)=ax^2+bx+1$が$f(1)=-6$と$\displaystyle \int_0^3 \{ f^\prime(x) \}^2 \, dx=63$を満たすならば,定数$a,\ b$の値は$a=[コ],\ b=[サ]$である.ただし,$f^\prime(x)$は$f(x)$の導関数を表す.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。