タグ「中点」の検索結果

25ページ目:全364問中241問~250問を表示)
島根大学 国立 島根大学 2012年 第2問
$a$を実数とする.次の問いに答えよ.

(1)放物線$y=x^2-x+3a$と直線$y=3ax+2$は異なる$2$つの交点をもつことを示せ.
(2)$(1)$の放物線と直線の$2$つの交点をむすぶ線分の中点を$\mathrm{M}$とする.$a$が実数全体を動くとき,$\mathrm{M}$の$y$座標の最小値を求めよ.
(3)$(1)$の放物線と直線の$2$つの交点の$x$座標を$\alpha$と$\beta$とする.$a$が実数全体を動くとき,$|\alpha|+|\beta|$の最小値を求めよ.
小樽商科大学 国立 小樽商科大学 2012年 第1問
次の[ ]の中を適当に補いなさい.

(1)$0 \leqq \theta \leqq \pi$のとき,関数$y=(2 \sin \theta-3 \cos \theta)^2-(2 \sin \theta-3 \cos \theta)+1$の最大値$M$と最小値$m$を求めると,$(M,\ m)=[ ]$.
(2)$x^2-4x-3=0,\ x>0$のとき,$2x^4+0x^3+1x^2+2x+2012=p+q\sqrt{7}$を満たす整数$p,\ q$は$(p,\ q)=[ ]$.
(3)平面上に$\mathrm{A}(a,\ b)$,$\mathrm{B}(-2,\ 0)$,$\mathrm{C}(0,\ 0)$がある.点$\mathrm{M}$は線分$\mathrm{AB}$ \\
の中点で点$\mathrm{X}$は線分$\mathrm{AC}$を$(1-t):t$に内分する点である.ただし, \\
$\displaystyle -4<a<0,\ b>0,\ 0<t<\frac{1}{2}$とする.直線$\mathrm{MX}$と直線$\mathrm{BC}$の \\
交点を$\mathrm{P}$,線分$\mathrm{AP}$と直線$\mathrm{BX}$の交点を$\mathrm{Q}$とする.三角形$\mathrm{BCX}$の面積を$S_1$,三角形$\mathrm{XPQ}$の面積を$S_2$とおくと,$\displaystyle \frac{S_1}{S_2}=[ ]$.
\img{2_2_2012_1}{40}
長崎大学 国立 長崎大学 2012年 第3問
3点$\mathrm{P}(4,\ -5)$,$\mathrm{Q}(0,\ 3)$,$\mathrm{R}(7,\ 4)$を通る円を$C$とする.次の問いに答えよ.

(1)円$C$の方程式を$x^2+y^2+ax+by+c=0$とおいて,$a,\ b,\ c$の値を求めよ.
(2)点$\mathrm{S}(-4,\ 0)$を通り,傾き$m$の直線を$\ell$とする.直線$\ell$が円$C$と2つの交点をもつような傾き$m$の範囲を求めよ.
(3)傾き$m$が(2)の範囲にあるとき,直線$\ell$と円$C$の2つの交点の中点の軌跡はある円の一部分であることを示し,その軌跡を求めよ.
山口大学 国立 山口大学 2012年 第3問
2点$\mathrm{A}$,$\mathrm{B}$は,$\mathrm{AB}=2$を満たしながら放物線$\displaystyle C:y=\frac{1}{2}x^2-x+\frac{3}{2}$の上を動く点とする.このとき,次の問いに答えなさい.

(1)$\mathrm{AB}$の中点を$\mathrm{P}$とする.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$の$x$座標をそれぞれ$a,\ b,\ p$とするとき,$a+b$と$ab$の値をそれぞれ$p$を用いて表しなさい.
(2)$\mathrm{P}$の$y$座標を$p$を用いて表しなさい.
(3)$\mathrm{P}$の$x$座標に対して$\mathrm{P}$の$y$座標を定める関数を$y=f(x)$とする.2つの曲線$y=f(x)$,$\displaystyle y=\frac{1}{2}x^2-x+\frac{3}{2}$と2直線$x=0,\ x=2$で囲まれた図形の面積を求めなさい.
福井大学 国立 福井大学 2012年 第4問
$xy$平面上に,曲線$C_1:x=t-\sin t,\ y=1-\cos t \ (0 \leqq t \leqq 2\pi)$がある.$0<t<2\pi$をみたす$t$に対し,$C_1$上の点$\mathrm{P}_1(t-\sin t,\ 1-\cos t)$における$C_1$の法線を$m$とおき,$x$軸と$m$の交点を$\mathrm{M}$とし,$\mathrm{M}$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点になるように点$\mathrm{P}_2$をとる.このとき,以下の問いに答えよ.
(図は省略)

(1)直線$m$の方程式を求めよ.また,$\mathrm{M},\ \mathrm{P}_2$の座標を$t$を用いて表せ.さらに,$\mathrm{P}_2$の$x$座標を$f(t)$とおくと,関数$f(t)$は,$0<t<2\pi$で増加することを示せ.
(2)$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$\mathrm{P}_2$の軌跡を$C_2$とするとき,$x$軸と曲線$C_2$で囲まれた図形の面積を求めよ.ただし,$t=0,\ 2\pi$に対しては,点$\mathrm{P}_2$をそれぞれ点$(0,\ 0)$,点$(2\pi,\ 0)$にとるものとする.
宮城教育大学 国立 宮城教育大学 2012年 第2問
三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$それぞれの中点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$p$を$0<p<1$を満たす数として,線分$\mathrm{EF}$,$\mathrm{FD}$,$\mathrm{DE}$をそれぞれ$p:1-p$に内分する点を$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$とする.$\overrightarrow{\mathrm{AF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{b}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AG}}$,$\overrightarrow{\mathrm{AH}}$をそれぞれ$\overrightarrow{a}$,$\overrightarrow{b}$,$p$を用いて表せ.
(2)$3$点$\mathrm{A}$,$\mathrm{G}$,$\mathrm{H}$が一直線上にあるときの$p$の値を求めよ.
(3)$p$が(2)で求めた値であるとし,$|\overrightarrow{\mathrm{AB}}|=4$,$|\overrightarrow{\mathrm{AC}}|=2$,$\angle \mathrm{BAC}=60^\circ$であるとき,$|\overrightarrow{\mathrm{GH}}|^2$を求めよ.
愛媛大学 国立 愛媛大学 2012年 第5問
次の問いに答えよ.

(1)$33^{20}$を$90$で割ったときの余りを求めよ.
(2)正六角形$\mathrm{ABCDEF}$において,辺$\mathrm{CD}$の中点を$\mathrm{P}$とする.また,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{e}$とおく.このとき,$\overrightarrow{\mathrm{FP}}$を$\overrightarrow{c}$,$\overrightarrow{e}$を用いて表せ.
(3)袋の中に$1$から$10$までの数字が$1$つずつ書かれた$10$個の玉が入っている.この袋から同時に$3$個の玉を取り出す.このとき,取り出された玉の$3$つの数を$3$辺の長さとする三角形が存在する確率を求めよ.
早稲田大学 私立 早稲田大学 2012年 第2問
三角形$\mathrm{OAB}$において$\mathrm{OA}=4,\ \mathrm{OB}=5,\ \mathrm{AB}=7$とする.点$\mathrm{P}$は辺$\mathrm{OA}$の中点,点$\mathrm{Q}$は辺$\mathrm{AB}$を$2:1$に内分する点とする.さらに点$\mathrm{R}$は辺$\mathrm{OB}$上にあり$\angle \mathrm{PQR}=90^\circ$である.このとき,
\[ \mathrm{OR} = \frac{[オ]}{[カ]}\mathrm{OB} \]
である.ただし,[カ]はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100$($x \geqq 0$かつ$y \geqq 0$)を$C$とする.点$\mathrm{P},\ \mathrm{Q}$は$C$上にあり,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.ただし,点$\mathrm{P}$と点$\mathrm{Q}$が一致するときは,点$\mathrm{R}$は点$\mathrm{P}$に等しいものとする.

(1)点$\mathrm{P}$の座標が$(6,\ 8)$であり,点$\mathrm{Q}$が$C$上を動くとき,点$\mathrm{R}$の軌跡は,
\[ (x-[キ])^2+(y-[ク])^2=[ケ],\ [コ] \leqq x \leqq [サ],\ [シ] \leqq y \leqq [ス] \]
である.
(2)点$\mathrm{P}$,$\mathrm{Q}$が$C$上を自由に動くとき,点$\mathrm{R}$の動く範囲の面積は,
\[ \frac{[セ]}{[ソ]}\pi + [タ] \]
である.ただし,$[ソ]$はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第1問
$[ア]$~$[エ]$にあてはまる数または式を解答用紙の所定欄に記入せよ.

(1)次の等式
\[ \log_3x - \frac{1}{\log_9x} = (-1)^x \]
を満たす正の整数$x$の値は$[ア]$である
(2)定数関数でない関数$f(x)$が
\[ f(x) = x^2 - \int_0^1 (f(t)+x)^2dt \]
を満たすとき,$f(x)=[イ]$である.
(3)$0<\theta \leqq 180^\circ$とする.数列$\{a_n\}$を次で定める.
\[ a_1 = \cos\theta, \quad a_{n+1}= a_n^2-1 \]
このとき,$a_4 = a_5$となる$\cos\theta$の最大値は$[ウ]$である.
(4)体積が$1$の正四面体の各辺の中点を頂点とする正八面体の体積は$[エ]$である.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。