タグ「中点」の検索結果

23ページ目:全364問中221問~230問を表示)
大阪工業大学 私立 大阪工業大学 2013年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=\sqrt{3}$,$\displaystyle |\overrightarrow{b}|=\frac{2}{\sqrt{3}}$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.さらに,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とし,点$\mathrm{M}$を通り辺$\mathrm{OA}$に垂直な直線と点$\mathrm{N}$を通り辺$\mathrm{OB}$に垂直な直線との交点を$\mathrm{P}$とする.このとき,次の空所を埋めよ.

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.
(2)$x,\ y$を実数とし,$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$とおくと,$\overrightarrow{\mathrm{MP}}=(x-[イ]) \overrightarrow{a}+y \overrightarrow{b}$と表されるので,$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{a}$より$x,\ y$の関係式は$3x+y=[ウ]$である.
また,$\overrightarrow{\mathrm{NP}} \perp \overrightarrow{b}$より,$x,\ y$の関係式は$[エ]=2$である.したがって,$x=[オ]$,$y=[カ]$である.
大阪工業大学 私立 大阪工業大学 2013年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=\sqrt{3}$,$\displaystyle |\overrightarrow{b}|=\frac{2}{\sqrt{3}}$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.さらに,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とし,点$\mathrm{M}$を通り辺$\mathrm{OA}$に垂直な直線と点$\mathrm{N}$を通り辺$\mathrm{OB}$に垂直な直線との交点を$\mathrm{P}$とする.このとき,次の空所を埋めよ.

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.
(2)$x,\ y$を実数とし,$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$とおくと,$\overrightarrow{\mathrm{MP}}=(x-[イ]) \overrightarrow{a}+y \overrightarrow{b}$と表されるので,$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{a}$より$x,\ y$の関係式は$3x+y=[ウ]$である.
また,$\overrightarrow{\mathrm{NP}} \perp \overrightarrow{b}$より,$x,\ y$の関係式は$[エ]=2$である.したがって,$x=[オ]$,$y=[カ]$である.
首都大学東京 公立 首都大学東京 2013年 第4問
$a$は$0$でない定数とし,$b$と$c$を定数とする.$k$がすべての実数を動くとき,$xy$平面上の直線$\ell:y=kx+k^2+3k+1$はつねに放物線$C:y=ax^2+bx+c$に接するものとする.このとき,以下の問いに答えなさい.

(1)$a,\ b,\ c$の値を求めなさい.
(2)直線$\ell$と放物線$C$の接点を$\mathrm{P}$とするとき,原点$\mathrm{O}$と点$\mathrm{P}$を結ぶ線分$\mathrm{OP}$の中点$\mathrm{Q}(s,\ t)$の軌跡の方程式を求めなさい.
会津大学 公立 会津大学 2013年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{AB}$の長さをそれぞれ$2,\ 4,\ 3$とする.辺$\mathrm{AB}$の中点を$\mathrm{M}$とし,頂点$\mathrm{A}$から辺$\mathrm{OB}$に下ろした垂線と線分$\mathrm{OM}$との交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,以下の空欄をうめよ.

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[イ]$である.
(2)$\overrightarrow{\mathrm{OM}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表すと
\[ \overrightarrow{\mathrm{OM}}=[ロ] \overrightarrow{a}+[ハ] \overrightarrow{b} \]
である.
(3)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表すと
\[ \overrightarrow{\mathrm{AP}}=[ニ] \overrightarrow{a}+[ホ] \overrightarrow{b} \]
である.
岡山県立大学 公立 岡山県立大学 2013年 第2問
放物線$C:y=x^2$上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$がある.ただし,$a<b$とする.放物線$C$と線分$\mathrm{AB}$が囲む部分の面積を$S$とする.次の問いに答えよ.

(1)$\displaystyle S=\frac{(b-a)^3}{6}$であることを示せ.
(2)$2$点$\mathrm{A},\ \mathrm{B}$を固定する.放物線$C$上の点$\mathrm{P}(t,\ t^2)$に対して,放物線$C$と線分$\mathrm{AP}$が囲む部分の面積を$S_1$,放物線$C$と線分$\mathrm{BP}$が囲む部分の面積を$S_2$とする.$a<t<b$のとき,$S_1+S_2$の最小値を求めよ.
(3)常に$\displaystyle S=\frac{9}{2}$であるように,$2$点$\mathrm{A},\ \mathrm{B}$が放物線$C$上を動く.このとき,線分$\mathrm{AB}$の中点の軌跡の方程式を求めよ.
高崎経済大学 公立 高崎経済大学 2013年 第4問
$3$次関数$f(x)=x^3+3x^2-9x$について,以下の各問いに答えよ.

(1)$y=f(x)$のグラフにおいて,$f(x)$が極大となる点を$\mathrm{A}$,極小となる点を$\mathrm{B}$とする.$\mathrm{A}$および$\mathrm{B}$の座標を求めよ.
(2)$\mathrm{A}$と$\mathrm{B}$を両端とする線分の中点を$\mathrm{C}$とする.$\mathrm{C}$の座標を求めよ.
(3)$y=f(x)$のグラフ上に点$\mathrm{D}$をとる.ただし,$\mathrm{D}$の$x$座標は$\mathrm{B}$の$x$座標より大きいものとする.いま,三角形$\mathrm{BCD}$の面積が$480$であるとき,$\mathrm{C}$と$\mathrm{D}$を結ぶ直線の式を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2013年 第4問
$s$を実数とするとき,座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(s,\ |1-s|)$に対して,以下の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積を$t$とおく.$t$を$s$の関数で表せ.また,その$s$の関数を$f(s)$とおくとき,$t=f(s)$のグラフを描け.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\theta$とするとき,$\cos \theta \leqq 0$となる$s$の範囲を求めよ.
(3)線分$\mathrm{AB}$の中点を$\mathrm{C}$とするとき,線分$\mathrm{OC}$の長さの最小値を求めよ.また,そのときの$s$の値を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2013年 第3問
隣り合う辺の長さが$a,\ b$の長方形がある.その各辺の中点を順に結んで四角形をつくる.さらにその四角形の各辺の中点を順に結んで四角形をつくる.このような操作を無限に続ける.

(1)最初の長方形も含めたこれらの四角形の周の長さの総和$S$を求めよ.
(2)関係$a+b=1$を満たしながら$a,\ b$が動くときの$S$の最小値を求めよ.
岡山大学 国立 岡山大学 2012年 第3問
四角形$\mathrm{ABCD}$は平行四辺形ではないとし,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$の中点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とする.

(1)線分$\mathrm{PR}$の中点$\mathrm{K}$と線分$\mathrm{QS}$の中点$\mathrm{L}$は一致することを示せ.
(2)線分$\mathrm{AC}$の中点$\mathrm{M}$と線分$\mathrm{BD}$の中点$\mathrm{N}$を結ぶ直線は点$\mathrm{K}$を通ることを示せ.
埼玉大学 国立 埼玉大学 2012年 第2問
座標平面内の曲線$y=x^2$上の2点$\mathrm{P}_1(x_1,\ y_1)$と$\mathrm{P}_2(x_2,\ y_2)$を両端にもつ長さ$r>0$の線分$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{C}(s,\ t)$とする.また$a=x_1-x_2,\ b=x_1+x_2$とおく.このとき下記の設問に答えなさい.

(1)$r^2$を$a$と$b$を用いて表しなさい.
(2)線分$\mathrm{P}_1 \mathrm{P}_2$の中点$\mathrm{C}$の$y$座標$t$を$b$と$r$を用いて表しなさい.
(3)$0<r<1$とする.このとき$t$は$b=0$のとき最小値$\displaystyle \frac{r^2}{4}$をとることを示しなさい.
(4)$r \geqq 1$の場合,$t$の最小値を$r$を用いて表しなさい.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。