タグ「中点」の検索結果

22ページ目:全364問中211問~220問を表示)
東京薬科大学 私立 東京薬科大学 2013年 第4問
$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$である長方形の紙$\mathrm{ABCD}$が平らな机上に置かれている.$\mathrm{M}$を$\mathrm{AB}$の中点とすると,$\angle \mathrm{MCB}={[あい]}^\circ$である.いま,ある直線$\ell$に沿ってこの紙を折り曲げて,頂点$\mathrm{C}$が$\mathrm{M}$に重なるようにする.$\ell$と辺$\mathrm{BC}$との交点を$\mathrm{E}$とすると,$\mathrm{CE}$の長さは$\displaystyle \frac{[う] \sqrt{[え]}}{[お]}$である.次に,折り畳まれた紙を開き,折り曲げられた部分が机上に垂直になったところで止める(頂点$\mathrm{C}$は空中にある).このとき,$\mathrm{AC}=[か]$,$\mathrm{BC}=\sqrt{[き]}$,内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[く]$となる.
近畿大学 私立 近畿大学 2013年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$を$1:2$の比に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の中点を$\mathrm{Q}$,$\mathrm{R}$を辺$\mathrm{OC}$上の点とするとき,

(1)線分$\mathrm{PQ}$の長さを求めよ.
(2)三角形$\mathrm{PQC}$の面積を求めよ.
(3)$\mathrm{R}$が辺$\mathrm{OC}$上を動くとき,三角形$\mathrm{PQR}$の面積の最小値を求めよ.
(4)頂点$\mathrm{O}$から三角形$\mathrm{PQR}$を含む平面に垂線$\mathrm{OH}$を引く.点$\mathrm{H}$が三角形$\mathrm{PQR}$の内部にあるとき,$\mathrm{OR}=r$の取りうる値の範囲を求めよ.ただし三角形の内部とはその周を含まないものとする.
同志社大学 私立 同志社大学 2013年 第3問
$\triangle \mathrm{OAB}$において$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.$2$つの正の数$s,\ t$に対して,$\overrightarrow{\mathrm{OC}}=s \overrightarrow{a}+t \overrightarrow{b}$となるように点$\mathrm{C}$を定める.また,線分$\mathrm{AC}$および線分$\mathrm{BC}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とし,直線$\mathrm{OM}$および直線$\mathrm{ON}$が線分$\mathrm{AB}$と交わる点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=3$,$\overrightarrow{a} \cdot \overrightarrow{b}=5$のとき,次の問いに答えよ.

(1)線分$\mathrm{AB}$の長さ,および$\triangle \mathrm{OAB}$の面積$S_1$を求めよ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$を用いて表せ.
(4)$\triangle \mathrm{OPQ}$の面積を$S_2$とする.$S_2$を$s,\ t$を用いて表せ.
(5)$\displaystyle S_2=\frac{1}{4}S_1$となるための$s,\ t$の条件を求め,$s,\ t$がその条件をみたしながら動くとき,点$\mathrm{C}$の存在する範囲を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第3問
$\mathrm{O}$を中心とする半径$1$の円周上に相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおき,$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \neq \overrightarrow{\mathrm{0}}$とする.線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の中点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とし,$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$,$\overrightarrow{\mathrm{OR}}=\overrightarrow{r}$とおく.

このとき,以下の$[$1$]$~$[$6$]$について適切な値を,$[イ]$には適切な式を解答欄に答えなさい.また,$[ア]$,$[ウ]$には下部の選択肢からもっともふさわしいものを選択して,解答欄に記入しなさい.
ベクトル$\displaystyle \overrightarrow{d}=\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})$とすると,
\[ |\overrightarrow{d}-\overrightarrow{p}|=|\overrightarrow{d}-\overrightarrow{q}|=|\overrightarrow{d}-\overrightarrow{r}|=[$1$] \]
となり,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$によって定まる点$\mathrm{D}$は$\triangle \mathrm{PQR}$の$[ア]$となることがわかる.
いま,線分$\mathrm{AB}$の長さを$1$,線分$\mathrm{AC}$の長さを$\sqrt{3}$とし,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$は,どの$2$つも平行ではないとする.このとき,線分$\mathrm{BC}$の長さは$[$2$]$であり,$\overrightarrow{a} \cdot \overrightarrow{c}=[$3$]$である.また,$\overrightarrow{b}$を$\overrightarrow{a}$と$\overrightarrow{c}$で表すと,$\overrightarrow{b}=[イ]$となる.
また,$\triangle \mathrm{PQR}$について,$\angle \mathrm{QPR}$の二等分線と辺$\mathrm{QR}$の交点を$\mathrm{S}$とおき,$\overrightarrow{\mathrm{PS}}$を$\overrightarrow{a}$と$\overrightarrow{c}$で表すと,
\[ \overrightarrow{\mathrm{PS}}=[$4$] \overrightarrow{a}+[$5$] \overrightarrow{c} \]
とかける.同様にして,$\angle \mathrm{PQR}$の二等分線と辺$\mathrm{PR}$の交点を$\mathrm{T}$とおく.線分$\mathrm{PS}$と線分$\mathrm{QT}$の交点を$\mathrm{U}$とおくと,$\mathrm{U}$は$\triangle \mathrm{PQR}$の$[ウ]$となり,
\[ \overrightarrow{\mathrm{OU}}=[$6$] \overrightarrow{b} \]
となることがわかる.
\begin{screen}
選択肢: \quad 重心, \quad 内心, \quad 外心
\end{screen}
杏林大学 私立 杏林大学 2013年 第2問
動点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は,時刻$t=0$においてすべて点$\mathrm{A}(3,\ 0)$にあり,原点$\mathrm{O}(0,\ 0)$を中心とする半径$3$の円周上を反時計まわりに移動する.時刻$t$において$\angle \mathrm{AOP}=t$,$\angle \mathrm{AOQ}=2t$,$\angle \mathrm{AOR}=3t$である.以下,$t$は$0<t<\pi$を満たすものとする.

(1)時刻$t$において,三角形$\mathrm{PQR}$の面積$S$は,
\[ S=[ア] \sin t-\frac{[イ]}{[ウ]} \sin \left( [エ] t \right) \]
と表わせる.面積$S$は$\displaystyle t=\frac{[オ]}{[カ]} \pi$のとき最大値$\displaystyle \frac{[キク]}{[ケ]} \sqrt{[コ]}$をとる.

(2)点$\mathrm{R}$から直線$\mathrm{PQ}$に下ろした垂線の足を$\mathrm{H}$とする.時刻$t$において,行列
$\left( \begin{array}{cc}
\cos \displaystyle\frac{3}{2}t & \sin \displaystyle\frac{3}{2}t \\
-\sin \displaystyle\frac{3}{2}t & \cos \displaystyle\frac{3}{2}t
\end{array} \right)$で表わされる$1$次変換により,点$\mathrm{H}$は
\[ \left( 3 \cos \left( \frac{[サ]}{[シ]} t \right),\ 3 \sin \left( \frac{[ス]}{[セ]} t \right) \right) \]
に移動する.$\mathrm{OH}^2$は$\displaystyle \cos t=\frac{\sqrt{[ソ]}}{[タ]}$を満たす時刻$t$において最大値$[チ]+[ツ] \sqrt{[テ]}$をとる.
(3)時刻$t$の変化にともない,線分$\mathrm{PR}$の中点が描く軌跡を$C$とする.点$\mathrm{O}$を極とし,半直線$\alpha \overrightarrow{\mathrm{OA}} (\alpha \geqq 0)$を始線としたとき,曲線$C$の極方程式は,極座標$(r,\ \theta)$を用いて
\[ r=[ト] \cos \left( \frac{[ナ]}{[ニ]} \theta \right) \]
と表わされる.
近畿大学 私立 近畿大学 2013年 第2問
空間内の同一平面上にない$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$|\overrightarrow{\mathrm{OA}}|=2$,$|\overrightarrow{\mathrm{OB}}|=3$,$|\overrightarrow{\mathrm{OC}}|=4$,$|\overrightarrow{\mathrm{AB}}|=4$,$|\overrightarrow{\mathrm{BC}}|=6$,$|\overrightarrow{\mathrm{CA}}|=5$を満たしているとする.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{[アイ]}{[ウ]}$,内積$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}$の値は$\displaystyle \frac{[エオカ]}{[キ]}$,内積$\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}$の値は$\displaystyle \frac{[クケ]}{[コ]}$である.
(2)線分$\mathrm{OA}$の中点を$\mathrm{L}$,線分$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{M}$,線分$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{N}$とする.$\triangle \mathrm{LMN}$の重心を$\mathrm{P}$とし,直線$\mathrm{OP}$と平面$\mathrm{ABC}$との交点を$\mathrm{Q}$とする.このとき,
\[ \overrightarrow{\mathrm{OP}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OC}} \]
であり,したがって
\[ |\overrightarrow{\mathrm{OP}}|=\frac{\sqrt{[チツ]}}{[テ]} \]
となる.また,
\[ \frac{|\overrightarrow{\mathrm{OP}}|}{|\overrightarrow{\mathrm{PQ}}|}=\frac{[トナ]}{[ニヌ]} \]
である.
近畿大学 私立 近畿大学 2013年 第2問
空間内の同一平面上にない$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$|\overrightarrow{\mathrm{OA}}|=2$,$|\overrightarrow{\mathrm{OB}}|=3$,$|\overrightarrow{\mathrm{OC}}|=4$,$|\overrightarrow{\mathrm{AB}}|=4$,$|\overrightarrow{\mathrm{BC}}|=6$,$|\overrightarrow{\mathrm{CA}}|=5$を満たしているとする.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{[アイ]}{[ウ]}$,内積$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}$の値は$\displaystyle \frac{[エオカ]}{[キ]}$,内積$\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}$の値は$\displaystyle \frac{[クケ]}{[コ]}$である.
(2)線分$\mathrm{OA}$の中点を$\mathrm{L}$,線分$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{M}$,線分$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{N}$とする.$\triangle \mathrm{LMN}$の重心を$\mathrm{P}$とし,直線$\mathrm{OP}$と平面$\mathrm{ABC}$との交点を$\mathrm{Q}$とする.このとき,
\[ \overrightarrow{\mathrm{OP}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OC}} \]
であり,したがって
\[ |\overrightarrow{\mathrm{OP}}|=\frac{\sqrt{[チツ]}}{[テ]} \]
となる.また,
\[ \frac{|\overrightarrow{\mathrm{OP}}|}{|\overrightarrow{\mathrm{PQ}}|}=\frac{[トナ]}{[ニヌ]} \]
である.
近畿大学 私立 近畿大学 2013年 第1問
$xy$平面に正三角形$\mathrm{ABC}$があり,$3$頂点の座標はそれぞれ$\mathrm{A}(0,\ \sqrt{3})$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(1,\ 0)$となっている.線分$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{CA}$の中点を$\mathrm{E}$とする.また$\mathrm{P}$は辺$\mathrm{AB}$上を動く点とし,$\mathrm{Q}$は辺$\mathrm{AC}$上を動く点とする.

(1)直線$\mathrm{AB}$に関して$\mathrm{D}$と対称な点$\mathrm{T}$の座標は$([ア],\ [イ])$である.
(2)線分$\mathrm{TE}$を$s:1-s$の比に内分する点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{BR}}=m \overrightarrow{\mathrm{BA}}+n \overrightarrow{\mathrm{BC}}$と表すと$m=[ウ]$,$n=[エ]$となる.ただし$m,\ n$は$s$の$1$次式である.また$s=[オ]$のとき$\mathrm{R}$は線分$\mathrm{AB}$上にある.
(3)$\mathrm{DP}+\mathrm{PE}$の最小値は$[カ]$である.またそのとき$\mathrm{BP}=[キ]$となる.
(4)$\mathrm{DP}+\mathrm{PQ}+\mathrm{QD}$の最小値は$[ク]$である.またそのとき$\tan \angle \mathrm{BPQ}=[ケ]$となる.
早稲田大学 私立 早稲田大学 2013年 第2問
面積$1$の正三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$の中点を$\mathrm{M}$とする.正の実数$t$に対し,線分$\mathrm{AM}$を$1:t$に内分する点を$\mathrm{P}$とし,さらに直線$\mathrm{BP}$と辺$\mathrm{AC}$の交点を$\mathrm{Q}$,直線$\mathrm{CP}$と辺$\mathrm{AB}$の交点を$\mathrm{R}$とする.次の設問に答えよ.

(1)$\displaystyle \frac{\mathrm{QC}}{\mathrm{AQ}}$を$t$を用いて表せ.
(2)三角形$\mathrm{MQR}$の面積が最大となる$t$の値と,そのときの面積を求めよ.
立教大学 私立 立教大学 2013年 第3問
座標平面上に点$\mathrm{A}(2,\ 0)$,点$\mathrm{B}(0,\ 2)$があり,点$\mathrm{P}(x,\ y)$は$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=0$を満たしている.このとき,次の問に答えよ.

(1)点$\mathrm{P}$の軌跡の方程式を求めよ.
(2)線分$\mathrm{PA}$の長さが$\sqrt{2}$となるとき,点$\mathrm{P}$の座標を求めよ.
(3)線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.点$\mathrm{P}(x,\ y)$について$x>0$,$y=1$であるとき,$\angle \mathrm{AMP}$を求めよ.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。