タグ「中点」の検索結果

14ページ目:全364問中131問~140問を表示)
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
東京海洋大学 国立 東京海洋大学 2014年 第4問
座標平面上の放物線$C:y=-x^2+2ax-a^2+a+1$を考える.$a$が実数の範囲を動くとき,以下の問いに答えよ.

(1)$C$と放物線$\displaystyle y=x^2+\frac{1}{2}$との$2$つの共有点を結んだ線分の中点(共有点が$1$つの場合にはその点自身とする)が描く軌跡の長さを求めよ.
(2)$\displaystyle y \geqq x^2+\frac{1}{2}$の表す領域のうちで$C$が通過する部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2014年 第4問
平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$|\overrightarrow{\mathrm{OA}}|=\sqrt{5}$,$|\overrightarrow{\mathrm{OB}}|=1$,かつ$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=1$を満たすとする.ここで,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積を表す.また,$s$を実数とし,点$\mathrm{P}$,$\mathrm{Q}$を$\overrightarrow{\mathrm{OP}}=(1-s^2) \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=(1-s) \overrightarrow{\mathrm{OB}}$で定める.

(1)線分$\mathrm{AB}$の中点を$\mathrm{M}$とするとき,$\overrightarrow{\mathrm{MP}}$,$\overrightarrow{\mathrm{MQ}}$をそれぞれ$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,および$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{\mathrm{MQ}}$となる$s$の値をすべて求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第3問
辺の長さが$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\mathrm{OC}=3$である四面体$\mathrm{OABC}$において,$\mathrm{OA} \perp \mathrm{AB}$,$\mathrm{OA} \perp \mathrm{AC}$とする.辺$\mathrm{OA}$の中点を$\mathrm{D}$とし,辺$\mathrm{OB}$を$1:3$に内分する点を$\mathrm{E}$,辺$\mathrm{OC}$を$1:8$に内分する点を$\mathrm{F}$とする.$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$を通る平面上の点$\mathrm{G}$が,$\mathrm{EG} \perp \mathrm{DE}$,$\mathrm{FG} \perp \mathrm{DF}$をみたすとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{a} \cdot \overrightarrow{c}$の値をそれぞれ求めよ.
(2)$\overrightarrow{b} \cdot \overrightarrow{c}=t$とおくとき,$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$t$を用いて表せ.
(3)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直線$\mathrm{OG}$が点$\mathrm{H}$で交わるとする.直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{I}$とするとき,$\mathrm{BI}:\mathrm{IC}$を求めよ.
香川大学 国立 香川大学 2014年 第3問
自然数$n$に対して,座標平面上の点$\mathrm{P}_n$を次のように帰納的に定める.点$\mathrm{P}_1$の座標を$(1,\ 1)$とし,原点$\mathrm{O}$を中心として線分$\mathrm{OP}_n$を反時計回りに${90}^\circ$回転させてできる線分を$\mathrm{OQ}_n$とし,線分$\mathrm{OQ}_n$の中点を$\mathrm{P}_{n+1}$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$の座標を求めよ.
(2)$k$を自然数とするとき,点$\mathrm{P}_{4k+1}$の座標を$k$を用いて表せ.
(3)点$\mathrm{X}_n$を
\[ \overrightarrow{\mathrm{OX}}_n=\overrightarrow{\mathrm{OP}}_1+\overrightarrow{\mathrm{OP}}_2+\cdots +\overrightarrow{\mathrm{OP}}_n \]
となるように定める.このとき,点$\mathrm{X}_2$,$\mathrm{X}_3$,$\mathrm{X}_4$,$\mathrm{X}_5$の座標を求めよ.また,線分$\mathrm{OX}_1$,$\mathrm{X}_1 \mathrm{X}_2$,$\mathrm{X}_2 \mathrm{X}_3$,$\mathrm{X}_3 \mathrm{X}_4$,$\mathrm{X}_4 \mathrm{X}_5$を座標平面上に図示せよ.
(4)$k$を自然数とするとき,点$\mathrm{X}_{4k}$の座標を$k$を用いて表せ.
香川大学 国立 香川大学 2014年 第3問
自然数$n$に対して,座標平面上の点$\mathrm{P}_n$を次のように帰納的に定める.点$\mathrm{P}_1$の座標を$(1,\ 1)$とし,原点$\mathrm{O}$を中心として線分$\mathrm{OP}_n$を反時計回りに${90}^\circ$回転させてできる線分を$\mathrm{OQ}_n$とし,線分$\mathrm{OQ}_n$の中点を$\mathrm{P}_{n+1}$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$の座標を求めよ.
(2)$k$を自然数とするとき,点$\mathrm{P}_{4k+1}$の座標を$k$を用いて表せ.
(3)点$\mathrm{X}_n$を
\[ \overrightarrow{\mathrm{OX}}_n=\overrightarrow{\mathrm{OP}}_1+\overrightarrow{\mathrm{OP}}_2+\cdots +\overrightarrow{\mathrm{OP}}_n \]
となるように定める.このとき,点$\mathrm{X}_2$,$\mathrm{X}_3$,$\mathrm{X}_4$,$\mathrm{X}_5$の座標を求めよ.また,線分$\mathrm{OX}_1$,$\mathrm{X}_1 \mathrm{X}_2$,$\mathrm{X}_2 \mathrm{X}_3$,$\mathrm{X}_3 \mathrm{X}_4$,$\mathrm{X}_4 \mathrm{X}_5$を座標平面上に図示せよ.
(4)$k$を自然数とするとき,点$\mathrm{X}_{4k}$の座標を$k$を用いて表せ.
香川大学 国立 香川大学 2014年 第3問
自然数$n$に対して,座標平面上の点$\mathrm{P}_n$を次のように帰納的に定める.点$\mathrm{P}_1$の座標を$(1,\ 1)$とし,原点$\mathrm{O}$を中心として線分$\mathrm{OP}_n$を反時計回りに${90}^\circ$回転させてできる線分を$\mathrm{OQ}_n$とし,線分$\mathrm{OQ}_n$の中点を$\mathrm{P}_{n+1}$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$の座標を求めよ.
(2)$k$を自然数とするとき,点$\mathrm{P}_{4k+1}$の座標を$k$を用いて表せ.
(3)点$\mathrm{X}_n$を
\[ \overrightarrow{\mathrm{OX}}_n=\overrightarrow{\mathrm{OP}}_1+\overrightarrow{\mathrm{OP}}_2+\cdots +\overrightarrow{\mathrm{OP}}_n \]
となるように定める.このとき,点$\mathrm{X}_2$,$\mathrm{X}_3$,$\mathrm{X}_4$,$\mathrm{X}_5$の座標を求めよ.また,線分$\mathrm{OX}_1$,$\mathrm{X}_1 \mathrm{X}_2$,$\mathrm{X}_2 \mathrm{X}_3$,$\mathrm{X}_3 \mathrm{X}_4$,$\mathrm{X}_4 \mathrm{X}_5$を座標平面上に図示せよ.
(4)$k$を自然数とするとき,点$\mathrm{X}_{4k}$の座標を$k$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2014年 第3問
辺の長さが$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\mathrm{OC}=3$である四面体$\mathrm{OABC}$において,$\mathrm{OA} \perp \mathrm{AB}$,$\mathrm{OA} \perp \mathrm{AC}$とする.辺$\mathrm{OA}$の中点を$\mathrm{D}$とし,辺$\mathrm{OB}$を$1:3$に内分する点を$\mathrm{E}$,辺$\mathrm{OC}$を$1:8$に内分する点を$\mathrm{F}$とする.$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$を通る平面上の点$\mathrm{G}$が,$\mathrm{EG} \perp \mathrm{DE}$,$\mathrm{FG} \perp \mathrm{DF}$をみたすとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{a} \cdot \overrightarrow{c}$の値をそれぞれ求めよ.
(2)$\overrightarrow{b} \cdot \overrightarrow{c}=t$とおくとき,$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$t$を用いて表せ.
(3)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直線$\mathrm{OG}$が点$\mathrm{H}$で交わるとする.直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{I}$とするとき,$\mathrm{BI}:\mathrm{IC}$を求めよ.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。