タグ「中点」の検索結果

13ページ目:全364問中121問~130問を表示)
熊本大学 国立 熊本大学 2014年 第1問
空間内の$1$辺の長さ$1$の正四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.また,点$\mathrm{D}$を$\overrightarrow{\mathrm{OD}}=\overrightarrow{b}-\overrightarrow{a}$を満たす点,点$\mathrm{E}$を$\overrightarrow{\mathrm{OE}}=\overrightarrow{c}-\overrightarrow{a}$を満たす点とし,点$\mathrm{P}$を$\mathrm{OA}$の中点とする.以下の問いに答えよ.

(1)$0<t<1$に対し,$\mathrm{BD}$を$t:(1-t)$に内分する点を$\mathrm{R}$とし,$\mathrm{CE}$を$(1-t):t$に内分する点を$\mathrm{S}$とする.また,$\mathrm{OB}$と$\mathrm{PR}$の交点を$\mathrm{M}$とし,$\mathrm{OC}$と$\mathrm{PS}$の交点を$\mathrm{N}$とする.このとき,$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{ON}}$を,それぞれ$t$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\triangle \mathrm{OMN}$の面積を$t$を用いて表せ.
(3)$t$が$0<t<1$の範囲を動くとき,$\triangle \mathrm{OMN}$の面積の最小値を求めよ.
岩手大学 国立 岩手大学 2014年 第2問
$a$を正の実数とする.平面上の$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は$|\overrightarrow{\mathrm{OA}}|=a$,$|\overrightarrow{\mathrm{OB}}|=1$,$|\overrightarrow{\mathrm{OA}}-3 \overrightarrow{\mathrm{OB}}|=\sqrt{a^2+9}$を満たしている.点$\mathrm{P}$を$\overrightarrow{\mathrm{OP}}=2 \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$となるように定め,線分$\mathrm{AB}$と線分$\mathrm{OP}$の交点を$\mathrm{Q}$,線分$\mathrm{BQ}$の中点を$\mathrm{R}$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(4)$\overrightarrow{\mathrm{OR}}$と$\overrightarrow{\mathrm{AB}}$が垂直になるとき,$a$の値と三角形$\mathrm{OQR}$の面積を求めよ.
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に$2$つの曲線$C_1:y=-x^2+12$,$C_2:y=x^2-10x+29$がある.曲線$C_1$上を動く点$\mathrm{P}$の$x$座標を$a$とし,曲線$C_1$の点$\mathrm{P}$における接線を$\ell$とする.ただし,$a>0$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸,$y$軸で囲まれた三角形の面積を$S$とする.$S$を$a$を用いて表せ.また,$S$の最小値とそのときの$a$の値を求めよ.
(3)接線$\ell$と曲線$C_2$が$2$個の共有点をもつような$a$の値の範囲を求めよ.
(4)接線$\ell$と曲線$C_2$が$2$個の共有点をもつとき,それらの中点の軌跡を求めよ.
信州大学 国立 信州大学 2014年 第1問
次の問いに答えよ.

(1)$0<\theta<\pi$のとき,不等式$\cos 3\theta+4 \cos^2 \theta<0$を満たす$\theta$の値の範囲を求めよ.
(2)三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$の中点を$\mathrm{E}$とする.$2$直線$\mathrm{BE}$と$\mathrm{CD}$の交点を$\mathrm{P}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{2+4+6+\cdots +2n}$の和を求めよ.

{\bf 補足説明}
設問中の式の意味は
\[ \sum_{n=1}^\infty \frac{1}{2+4+6+\cdots +2n}=\frac{1}{2}+\frac{1}{2+4}+\frac{1}{2+4+6}+\frac{1}{2+4+6+8}+\cdots \]
である.
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に点$\mathrm{A}(\pi,\ 1)$がある.また,関数$y=\cos x$のグラフ上に点$\mathrm{P}$をとり,$\mathrm{A}$と$\mathrm{P}$との中点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\mathrm{P}$の座標を$(t,\ \cos t)$とするとき,$\mathrm{Q}$の座標を$t$を用いて表せ.
(2)$\mathrm{Q}$の座標を$(x,\ y)$とするとき,$y$を$x$の関数として表せ.また,$y$の最大値と最小値を求めよ.
(3)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフを同一の座標平面上に描け.ただし,どちらも$0 \leqq x \leqq 2\pi$の範囲で描け.
(4)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフの交点について,その$y$座標の取り得る値をすべて求めよ.ただし,$x$の範囲はすべての実数とする.
福岡教育大学 国立 福岡教育大学 2014年 第2問
正六角形$\mathrm{ABCDEF}$において,辺$\mathrm{DE}$の中点を$\mathrm{P}$とし,線分$\mathrm{AP}$と$\mathrm{BF}$の交点を$\mathrm{Q}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AF}}$を用いて表せ.
(2)$\mathrm{AQ}:\mathrm{QP}$を最も簡単な整数の比で表せ.
(3)$|\overrightarrow{\mathrm{AB}}|=1$のとき,$\triangle \mathrm{BPQ}$の面積を求めよ.
弘前大学 国立 弘前大学 2014年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$に対し,辺$\mathrm{AB}$の中点を$\mathrm{E}$,辺$\mathrm{AC}$の中点を$\mathrm{F}$,辺$\mathrm{BD}$を$t:(1-t)$の比に内分する点を$\mathrm{G}$,辺$\mathrm{CD}$を$u:(1-u)$の比に内分する点を$\mathrm{H}$とする.ただし,$0<t<1$,$0<u<1$とする.次の問いに答えよ.

(1)$4$点$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$が同一平面上にあるならば,$t=u$が成り立つことを示せ.
(2)$t=u$のとき,$\mathrm{EF}^2+\mathrm{FH}^2+\mathrm{HG}^2+\mathrm{GE}^2$の値の範囲を求めよ.
鳴門教育大学 国立 鳴門教育大学 2014年 第4問
$2$次関数$y=2x^2-(3k+1)x+k+5$,および$y=-x^2+(k+2)x+k-1$で表されるグラフを,それぞれ$C_1$,$C_2$とするとき,次の問いに答えなさい.

(1)$C_1$,$C_2$が$2$つの異なる交点をもつような定数$k$の値の範囲を求めなさい.また,$k$がその範囲にあるとき,$2$つの交点を結ぶ線分の中点の$x$座標を求めなさい.
(2)$C_1$,$C_2$が$2$つの異なる交点をもち,これら$2$つの交点を通る直線の傾きが$3$となるときの$k$の値を求めなさい.
奈良女子大学 国立 奈良女子大学 2014年 第4問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$x:(1-x)$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{CM}}$を$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)直線$\mathrm{CM}$上に,$\overrightarrow{\mathrm{CQ}}=y \overrightarrow{\mathrm{CM}}$となる点$\mathrm{Q}$をとる.$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{CM}}$が垂直であるとき,$y$を$x$を用いて表せ.
(3)$x$が$0<x<1$の範囲を動くとき,三角形$\mathrm{CMP}$の面積の最小値を求めよ.
愛知教育大学 国立 愛知教育大学 2014年 第5問
座標空間内の$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$に対して線分$\mathrm{OA}$の中点を$\mathrm{P}$,線分$\mathrm{AB}$を$q:(1-q)$の比に内分する点を$\mathrm{Q}$,線分$\mathrm{BC}$を$r:(1-r)$の比に内分する点を$\mathrm{R}$,線分$\mathrm{CO}$を$s:(1-s)$の比に内分する点を$\mathrm{S}$とする.ただし,$0<q<1$,$0<r<1$,$0<s<1$である.$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$が同一平面上にあるとき,$s$を$q,\ r$を用いて表せ.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。