タグ「中点」の検索結果

10ページ目:全364問中91問~100問を表示)
北里大学 私立 北里大学 2015年 第6問
三角形$\mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.また,線分$\mathrm{OB}$を$2:3$に内分する点を$\mathrm{C}$,線分$\mathrm{AC}$の中点を$\mathrm{P}$とする.さらに直線$\mathrm{OP}$と線分$\mathrm{AB}$の交点を$\mathrm{D}$とおく.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{OP}}=[タ] \overrightarrow{a}+[チ] \overrightarrow{b}$である.
(2)$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{OD}}=[ツ] \overrightarrow{a}+[テ] \overrightarrow{b}$である.
(3)三角形$\mathrm{OPC}$の面積を$M$,三角形$\mathrm{ADP}$の面積を$N$とおくとき,$\displaystyle \frac{M}{N}$の値は$[ト]$である.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第2問
$x^2-12x+y^2-24y+160=0$で表される円を$C$とおく.このとき,次の問に答えなさい.

(1)円$C$の中心$\mathrm{P}$は$([ア],\ [イウ])$で半径は$[エ] \sqrt{[オ]}$である.
(2)原点$\mathrm{O}(0,\ 0)$と中心$\mathrm{P}$を通る直線$\ell$を考える.直線$\ell$と円$C$の交点を原点に近い方から$\mathrm{Q}$,$\mathrm{R}$とおくと点$\mathrm{Q}$の$x$座標は$[カ]$,点$\mathrm{R}$の$x$座標は$[キ]$である($[カ]<[キ]$).
(3)直線$\ell$に平行で$y$切片が$k$の直線を$\ell(k)$とおく.ただし$0<k$とする.直線$\ell(k)$と円$C$が異なる$2$交点$\mathrm{S}$,$\mathrm{T}$をもつような$k$の値の範囲は$0<k<[クケ]$である.この$2$交点の$x$座標を$\alpha,\ \beta$とおくと$\displaystyle \alpha+\beta=[コサ]-\frac{[シ]}{[ス]}k$である.
(4)このとき$\displaystyle \mathrm{ST}^2=[セソ]-\frac{[タ]}{[チ]}k^2$である.$\mathrm{ST}$の中点を$\mathrm{U}$とおくと$\displaystyle \mathrm{PU}^2=\frac{[ツ]}{[テ]}k^2$なので三角形$\mathrm{PST}$の面積は$k=[ト] \sqrt{[ナ]}$のとき最大値$[ニヌ]$をとる.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
埼玉工業大学 私立 埼玉工業大学 2015年 第2問
正六角形$\mathrm{ABCDEF}$において,$\mathrm{DE}$の中点を$\mathrm{M}$,$\mathrm{AM}$の中点を$\mathrm{N}$,$\mathrm{BC}$の中点を$\mathrm{P}$とする.

(1)$\overrightarrow{\mathrm{AM}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AF}}$で表すと
\[ \overrightarrow{\mathrm{AM}}=\frac{[チ]}{[ツ]} \overrightarrow{\mathrm{AB}}+[テ] \overrightarrow{\mathrm{AF}} \]
となる.また,$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AF}}$で表すと
\[ \overrightarrow{\mathrm{NP}}=\frac{[ト]}{[ナ]} \overrightarrow{\mathrm{AB}}+\frac{[ニヌ]}{[ネ]} \overrightarrow{\mathrm{AF}} \]
となる.
(2)内積$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}=1$のとき
\[ \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AF}}=\frac{[ノハ]}{[ヒ]} \]
となる.
津田塾大学 私立 津田塾大学 2015年 第1問
次の問いに答えよ.

(1)$n$を自然数とするとき,不等式$3^n>n^2$を示せ.
(2)正四面体$\mathrm{OABC}$において$\mathrm{OA}$の中点を$\mathrm{M}$,$\mathrm{BC}$の中点を$\mathrm{N}$とする.

(i) $\overrightarrow{\mathrm{MN}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(ii) 直線$\mathrm{MN}$と直線$\mathrm{BC}$は直交することを示せ.
獨協医科大学 私立 獨協医科大学 2015年 第2問
正$n$角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \cdots \mathrm{P}_n$($n$は$4$以上の整数)を$K$とする.$K$の頂点と各辺の中点の合計$2n$個の点から異なる$3$点を選び,それらを線分で結んでできる図形を$T$とする.(ただし,$K$の$1$つの頂点とそれに隣接する中点の一方を結ぶ線分を$1$辺とする三角形,例えば辺$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{M}_1$として,三角形$\mathrm{P}_1 \mathrm{M}_1 \mathrm{P}_3$なども「$K$と辺を共有する三角形」とする.)

(1)$n=5$とする.
$T$が三角形となる確率は$\displaystyle \frac{[アイ]}{[ウエ]}$である.
$T$が二等辺三角形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
$T$が$K$と辺を共有しない三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)$T$が三角形となる確率は
\[ \frac{[コ]n^2-[サ]n-[シ]}{[ス]([セ]n-[ソ])(n-[タ])} \]
である.
$T$が$K$と辺を共有しない三角形となる確率は
\[ \frac{[チ]n^2-[ツテ]n+[トナ]}{([セ]n-[ソ])(n-[タ])} \]
である.
東北学院大学 私立 東北学院大学 2015年 第6問
三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\angle \mathrm{BAC}={60}^\circ$とする.辺$\mathrm{AC}$上に点$\mathrm{D}$を$\mathrm{AC} \perp \mathrm{BD}$となるようにとり,線分$\mathrm{BD}$の中点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\mathrm{AC}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\mathrm{BF}:\mathrm{FC}$を求めよ.
岡山理科大学 私立 岡山理科大学 2015年 第4問
\begin{mawarikomi}{55mm}{
(図は省略)
}
$5$点$\mathrm{A}(0,\ 0,\ 6)$,$\mathrm{B}(6,\ 0,\ 0)$,$\mathrm{C}(0,\ 6,\ 0)$,$\mathrm{D}(-6,\ 0,\ 0)$,$\mathrm{E}(0,\ -6,\ 0)$と線分$\mathrm{AB}$の中点$\mathrm{M}$について,次の問いに答えよ.

(1)$\mathrm{M}$の座標を求めよ.
(2)点$\mathrm{P}$が線分$\mathrm{AC}$上を動く.線分$\mathrm{MP}$,$\mathrm{PD}$の長さの和$l=\mathrm{MP}+\mathrm{PD}$の最小値と,そのときの$\mathrm{P}$の座標を求めよ.
(3)$\mathrm{P}$を$(2)$で求めたものとする.平面$\mathrm{MPD}$上に線分$\mathrm{BE}$の中点$\mathrm{N}$があることを証明せよ.

\end{mawarikomi}
旭川大学 私立 旭川大学 2015年 第3問
四面体$\mathrm{ABCD}$において,$\mathrm{AB}=2$,$\mathrm{AC}=\mathrm{BC}=\mathrm{AD}=\mathrm{BD}=4$,$\mathrm{CD}=5$であるとする.$\mathrm{E}$を辺$\mathrm{AB}$の中点とし,$\angle \mathrm{CED}=\theta$とおく.

(1)$\cos \theta$の値を求めよ.
(2)四面体$\mathrm{ABCD}$の体積を求めよ.
西南学院大学 私立 西南学院大学 2015年 第4問
平行四辺形$\mathrm{ABCD}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{E}$,辺$\mathrm{AD}$を$3:2$に内分する点を$\mathrm{F}$,辺$\mathrm{AD}$の中点を$\mathrm{G}$とする.直線$\mathrm{BG}$と直線$\mathrm{EF}$の交点を$\mathrm{P}$とすると,
\[ \overrightarrow{\mathrm{AP}}=\frac{[ネ]}{[ノ]} \overrightarrow{\mathrm{AB}}+\frac{[ハ]}{[ヒ]} \overrightarrow{\mathrm{AD}} \]
である.

また,直線$\mathrm{AP}$と直線$\mathrm{DC}$の交点を$\mathrm{Q}$とすると,
\[ \mathrm{DQ}:\mathrm{QC}=[フ]:[ヘ] \]
である.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。