タグ「中心」の検索結果

57ページ目:全588問中561問~570問を表示)
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第5問
半径1の円Oの中心Oを通る直線上に$\text{OA}=2$となるように点Aを定める.点Aを通り,円Oと2点B,Cで交わるような直線を引き,$\text{AB}=\text{BC}$となるようにしたい.2直線のなす角$\theta = \angle \text{OAB} \ (0^\circ <\theta<30^\circ)$をどのように定めればよいか.次の手順で検討せよ.

(1)線分BCの中点をMとして,線分AMの長さを$\cos \theta$を用いて表せ.
(2)同様に,線分BMの長さを$\cos \theta$を用いて表せ.
(3)$\text{AB}=\text{BC}$のとき$\text{AM}= 3\text{BM}$である.これを利用して$\cos \theta$の値を求めよ.
関西大学 私立 関西大学 2010年 第3問
座標平面上に$(3,\ 2)$を中心とし,半径$1$の円$\mathrm{O}_1$がある.円$\mathrm{O}_1$に外接し,かつ$x$軸に接する円$\mathrm{O}$の円周上のすべての点が$x \geqq 0$,$y \geqq 0$を満たす領域にあるとする.また,円$\mathrm{O}$の中心の座標を$(p,\ q)$とする.次の問いに答えよ.

(1)$q$を$p$で表せ.
(2)$x$軸,$y$軸に接し,円$\mathrm{O}_1$に外接する円の半径を求めよ.
(3)$p$のとりうる値の範囲を求めよ.
(4)$q$のとりうる値の範囲を求めよ.
自治医科大学 私立 自治医科大学 2010年 第14問
円$C:(x-6)^2+y^2=25$と直線$L:y=ax$($a$は実数,$a>0$)について考える.$C$と$L$の$2$つの相異なる交点を$\mathrm{P}$,$\mathrm{Q}$とする.$C$の中心と$\mathrm{P}$,$\mathrm{Q}$でつくる三角形の面積が最大となる$a$を$A$とする.$\sqrt{47}A$の値を求めよ.
北海学園大学 私立 北海学園大学 2010年 第4問
三角形$\mathrm{ABC}$において$\mathrm{AB}=2$,$\mathrm{CA}=3$とする.この三角形の外接円の中心を$\mathrm{O}$,辺$\mathrm{AB}$と$\mathrm{CA}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.また,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OA}}=s \overrightarrow{a}+t \overrightarrow{b}$,$\angle \mathrm{CAB}=\theta$とする.ただし,$s,\ t$は実数とする.

(1)ベクトル$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$の式で表せ.また,内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$\theta$の式で表せ.
(2)$\mathrm{BC}=4$のとき,$\cos \theta$,$s$,$t$の値をそれぞれ求めよ.
(3)$\displaystyle s=\frac{2}{3}$のとき,$t$と$\cos \theta$の値を求めよ.
龍谷大学 私立 龍谷大学 2010年 第2問
原点を中心とし半径$1$の円を$C$とする.また,点$\mathrm{A}(-1,\ 0)$を通り傾き$\displaystyle \frac{1}{2}$の直線を$\ell$とする.$C$と$\ell$の交点のうち,点$\mathrm{A}$でない方を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の座標を求めなさい.
(2)点$\mathrm{P}$を通り直線$\ell$と$45^\circ$の角度で交わる$2$本の直線の方程式を求めなさい.さらに,この$2$本の直線を図示しなさい.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$のとき,関数$y=\cos 2\theta-2 \sin \theta$の最大値とそのときの$\theta$の値を求めると$(y,\ \theta)=[ア]$であり,最小値とそのときの$\theta$の値を求めると$(y,\ \theta)=[イ]$である.
(2)実数$a,\ b$を係数とする方程式$x^3+ax^2+bx-4=0$の解の$1$つが$1-i$であるとき,残りの解のうち実数解を求めると$x=[ウ]$であり,$a,\ b$の値を求めると$(a,\ b)=[エ]$である.ただし,$i$は虚数単位である.
(3)$x$についての方程式$9^x-a \cdot 3^x+a^2-a=0$が$2$つの異なる実数解をもつとき,定数$a$のとりうる値の範囲は$[オ]$である.また,$x \geqq \sqrt{2}$,$y \geqq 1$,$x^2y=4$のとき,$(1+\log_2x)(\log_2y)$が最大値をとる$x,\ y$の値を求めると,$(x,\ y)=[カ]$である.
(4)座標平面上に中心が原点$\mathrm{O}$で半径が$3$の円$C$と,傾きが負で点$\mathrm{A}(5,\ 0)$を通る直線$\ell$を考える.$C$と$\ell$は$2$点$\mathrm{P}$,$\mathrm{Q}$($\mathrm{AP}<\mathrm{AQ}$)で交わるとする.$\angle \mathrm{POQ}$を$\theta$とするとき,$\triangle \mathrm{PQO}$の面積$S_1$を$\theta$を用いて表すと$S_1=[キ]$である.また,点$\mathrm{B}$の座標を$(-3,\ 0)$とするとき,$\triangle \mathrm{PQB}$の面積$S_2$の最大値は$[ク]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2010年 第3問
楕円$\displaystyle A:\frac{x^2}{4}+y^2=1$を原点を中心に反時計回りに$\displaystyle \frac{\pi}{3}$回転させて得た楕円を$B$とする.この回転により,点$\displaystyle \left( -\sqrt{3},\ \frac{1}{2} \right)$を接点とする$A$の接線$y=[ ]$は,$B$に対する接線$y=[ ]$に移される.
北海道薬科大学 私立 北海道薬科大学 2010年 第3問
$x^2+y^2-6ax+4ay+19a^2-a-1=0$($a$は定数)は円を表すものとする.

(1)$a$の値の範囲は$\displaystyle \frac{[ ]}{[ ]}<a<\frac{[ ]}{[ ]}$である.

(2)この円の面積が最大となるとき,円の中心座標は$\displaystyle \left( \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]} \right)$であり,最大面積は$\displaystyle \frac{[ ]}{[ ]} \pi$となる.
このとき,座標$\displaystyle \left( -\frac{1}{3},\ 1 \right)$を通り,円の面積を二等分する直線の方程式は
\[ y=-[ ] x+\frac{[ ]}{[ ]} \]
である.
北海道科学大学 私立 北海道科学大学 2010年 第22問
$a$は実数の定数とする.円$x^2+y^2-ax-2y=0$上の点$(4,\ 2)$における接線を$\ell$とする.このとき,次の各問に答えよ.

(1)$a$の値を求めよ.
(2)この円の中心の座標と半径を求めよ.
(3)接線$\ell$の傾きを求めよ.
(4)接線$\ell$の方程式を求めよ.
津田塾大学 私立 津田塾大学 2010年 第1問
次の問いに答えよ.

(1)$n$を自然数とする.全ての$x>0$に対して$x>n \log x$となるための$n$の条件を求めよ.ただし,$e=2.71 \cdots$である.
(2)座標平面上で点$(0,\ 2)$を中心とする半径$1$の円を$C$とする.$C$に外接し$x$軸に接する円の中心$\mathrm{P}(a,\ b)$が描く図形の方程式を求めよ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。