タグ「中心」の検索結果

52ページ目:全588問中511問~520問を表示)
京都府立大学 公立 京都府立大学 2011年 第3問
$n$を$5$以上の整数とする.座標平面上に原点$\mathrm{O}$を中心とする半径$n$の円$C_1$と,点$\mathrm{A}$を中心とする半径$1$の円$C_2$がある.$C_2$が$C_1$に外接しながらすべることなく反時計回りに転がるとき,$C_2$上の点$\mathrm{P}$が描く曲線を考える.はじめに$\mathrm{A}$は$(n+1,\ 0)$,$\mathrm{P}$は$(n,\ 0)$の位置にあるものとする.$\mathrm{P}$が$(n,\ 0)$から出発し,再び$(n,\ 0)$に戻るまで,$\mathrm{P}$が描く曲線を$C$とする.線分$\mathrm{OA}$と$x$軸の正の部分のなす角が$\theta (0 \leqq \theta \leqq 2\pi)$であるときの$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.以下の問いに答えよ.

(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)区間$\displaystyle 0 \leqq \theta \leqq \frac{2\pi}{n}$で$x(\theta)$の増減を調べよ.
(3)$C$によって囲まれた部分の面積を求めよ.
釧路公立大学 公立 釧路公立大学 2011年 第3問
半径が$a$の球に内接する直円錐のうち,体積が最も大きいものを直円錐$C$とし,その高さを$h$,体積を$V$とする.ただし,$a$は定数であり,円周率は$\pi$とする.このとき,以下の各問に答えよ.

(1)直円錐$C$の体積$V$を$h$の関数で表せ.
(2)$a=6$のとき,$h$と$V$を求めよ.
(3)$(2)$において,直円錐$C$の表面を底面の円と側面の扇形に分解したとき,扇形の中心角$\theta$を求めよ.
京都大学 国立 京都大学 2010年 第4問
点$\mathrm{O}$を中心とする正十角形において,$\mathrm{A}$,$\mathrm{B}$を隣接する$2$つの頂点とする.線分$\mathrm{OB}$上に$\mathrm{OP}^2=\mathrm{OB}\cdot \mathrm{PB}$を満たす点$\mathrm{P}$をとるとき,$\mathrm{OP}=\mathrm{AB}$が成立することを示せ.
大阪大学 国立 大阪大学 2010年 第4問
半径3の球$T_1$と半径1の球$T_2$が,内接した状態で空間に固定されている.半径1の球$S$が次の条件(A),(B)を同時に満たしながら動く.
\begin{eqnarray}
\text{(A)} \quad S \text{は} T_1 \text{の内部にあるか} T_1 \text{に内接している.} \nonumber \\
\text{(B)} \quad S \text{は} T_2 \text{の外部にあるか} T_2 \text{に外接している.} \nonumber
\end{eqnarray}
$S$の中心が存在しうる範囲を$D$とするとき,立体$D$の体積を求めよ.
静岡大学 国立 静岡大学 2010年 第2問
$xy$平面上で,点A$(-1,\ 0)$を中心とする円$C_1$と点B$(1,\ 0)$を中心とする円$C_2$が原点Oで外接している.点Pは円$C_1$上を,点Qは円$C_2$上を,それぞれ正の向きに回転する.今,P,Qが同時に原点を出発して,QはPの2倍の速さで回転する.このとき,次の問いに答えよ.

(1)$\angle \text{OAP} = \theta$とするとき,P,Qの座標をそれぞれ$\theta$を用いて表せ.
(2)線分PQの長さの最大値を求めよ.
東北大学 国立 東北大学 2010年 第6問
$xy$平面において,原点を中心としP$(1,\ 0)$を頂点の1つとする正6角形を$X$とする.$A$を2次の正方行列とし,$X$の各頂点$(x,\ y)$に対して,行列$A$の表す移動
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right) =A \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
で得られる点$(x^\prime,\ y^\prime)$は$X$の辺上の点(頂点を含む)であるとする.以下の問いに答えよ.

(1)点Pが行列$A$の表す移動でP自身に移るとき,$X$の各頂点は$X$のいずれかの頂点に移ることを示せ.また,そのときの行列$A$を求めよ.
(2)点Pが行列$A$の表す移動で$X$のある頂点に移るとき,$X$の各頂点は$X$のいずれかの頂点に移ることを示せ.また,そのときの行列$A$を求めよ.
静岡大学 国立 静岡大学 2010年 第4問
$xy$平面上で,点A$(-1,\ 0)$を中心とする円$C_1$と点B$(1,\ 0)$を中心とする円$C_2$が原点Oで外接している.点Pは円$C_1$上を,点Qは円$C_2$上を,それぞれ正の向きに回転する.今,P,Qが同時に原点を出発して,QはPの2倍の速さで回転する.このとき,次の問いに答えよ.

(1)$\angle \text{OAP} = \theta$とするとき,P,Qの座標をそれぞれ$\theta$を用いて表せ.
(2)線分PQの長さの最大値を求めよ.
九州大学 国立 九州大学 2010年 第4問
中心$(0,\ a)$,半径$a$の円を$xy$平面上の$x$軸の上を$x$の正の方向に滑らないように転がす.このとき円上の定点$\mathrm{P}$が原点$(0,\ 0)$を出発するとする.次の問いに答えよ.

(1)円が角$t$だけ回転したとき,点$\mathrm{P}$の座標を求めよ.
(2)$t$が$0$から$2\pi$まで動いて円が一回転したときの点$\mathrm{P}$の描く曲線を$C$とする.曲線$C$と$x$軸とで囲まれる部分の面積を求めよ.
(3)$(2)$の曲線$C$の長さを求めよ.
九州大学 国立 九州大学 2010年 第3問
$xy$平面上に原点Oを中心とする半径1の円を描き,その上半分を$C$とし,その両端をA$(-1,\ 0)$,B$(1,\ 0)$とする.$C$上の2点N,Mを$\text{NM}=\text{MB}$となるように取る.ただし,$\text{N} \neq \text{B}$とする.このとき,次の問いに答えよ.

(1)$\angle \text{MAB}=\theta$とおき,弦の長さMB及び点Mの座標を$\theta$を用いて表せ.
(2)点Nから$x$軸に下ろした垂線をNPとしたとき,PBを$\theta$を用いて表せ.
(3)$t=\sin \theta$とおく.条件$\text{MB}=\text{PB}$を$t$を用いて表せ.
(4)$\text{MB}=\text{PB}$となるような点Mが唯一あることを示せ.
弘前大学 国立 弘前大学 2010年 第7問
座標平面において,原点を中心とする半径$3$の円を$C$,点$(0,\ -1)$を中心とする半径$8$の円を$C^{\, \prime}$とする.$C$と$C^{\, \prime}$にはさまれた領域を$D$とする.

(1)$0 \leqq k \leqq 3$とする.直線$\ell$と原点との距離が一定値$k$であるように$\ell$が動くとき,$\ell$と$D$の共通部分の長さの最小値を求めよ.
(2)直線$\ell$が$C$と共有点をもつように動くとき,$\ell$と$D$の共通部分の長さの最小値を求めよ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。