タグ「中心」の検索結果

50ページ目:全588問中491問~500問を表示)
神奈川大学 私立 神奈川大学 2011年 第3問
座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円$C$に,この円の外にある点$\mathrm{P}$から$2$本の接線をひき,それらのなす角のうち$C$を挟むものの大きさを$\theta$とする.さらに,線分$\mathrm{OP}$の長さを$r$とする.このとき,次の問いに答えよ.

(1)$\displaystyle \cos \frac{\theta}{2}$を$r$を用いて表せ.

(2)$\cos \theta$を$r$を用いて表せ.

(3)$\displaystyle \theta=\frac{\pi}{3}$を満たす点$\mathrm{P}$の軌跡を求めよ.

(4)$\displaystyle \frac{\pi}{3} \leqq \theta \leqq \frac{2\pi}{3}$を満たす点$\mathrm{P}$の存在する領域の面積を求めよ.
(図は省略)
北星学園大学 私立 北星学園大学 2011年 第3問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}:\angle \mathrm{B}:\angle \mathrm{C}=5:3:1$であり,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る円の中心を$\mathrm{O}$とする.線分$\mathrm{AO}$の延長と円$\mathrm{O}$との交点を$\mathrm{D}$とする.円$\mathrm{O}$において弦$\mathrm{BC}$と平行に別の弦$\mathrm{EF}$を引く.ただし,$\mathrm{EF}$は線分$\mathrm{OD}$と交わり,弧$\mathrm{BD}$上に点$\mathrm{E}$がくるような位置にあるものとする.以下の問に答えよ.

(1)$\angle \mathrm{BAD}$の大きさを求めよ.
(2)$\angle \mathrm{BAE}=\angle \mathrm{CAF}$であることを証明せよ.
北海道科学大学 私立 北海道科学大学 2011年 第14問
$3$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(6,\ 0)$,$\mathrm{C}(7,\ 1)$を頂点とする三角形$\mathrm{ABC}$の重心は$[ ]$であり,$3$点を通る円の中心は$[ ]$である.
久留米大学 私立 久留米大学 2011年 第5問
$y=|2x-1|$のグラフと$2$点で接する半径$3$の円の中心座標は$[$11$]$であり,$2$つの接点の座標は$[$12$]$と$[$13$]$である.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第2問
中心が$\mathrm{O}$で半径$1$の円上の点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対し
\[ \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+4k \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \quad{(零ベクトル)} \]
を満たす実数$k$が存在するという.このとき,次の問に答えなさい.

(1)特に$k=0$のとき$\mathrm{AB}=[ア]$である.
以下$0<k$とする.
(2)$\angle \mathrm{AOB}=\theta$とおく.$0<\theta<\pi$とするとき,$\displaystyle k=\frac{[イ]}{[ウ]} \cos \frac{\theta}{[エ]}$が成り立つ.
(3)$F=\mathrm{AB}^2+\mathrm{BC}^2+\mathrm{CA}^2$を$k$の式で表すと
\[ F=[オカキ] k^2+[ク] k+[ケ] \]
である.
(4)$F$は$\displaystyle k=\frac{[コ]}{[サ]}$のとき最大値$[シ]$をとる.
大同大学 私立 大同大学 2011年 第3問
原点$\mathrm{O}$を中心とする半径$3$の円を$C$とする.点$\mathrm{A}(5 \sqrt{2},\ 2 \sqrt{2})$を通り円$C$に接する直線で傾きが正のものを$\ell$とし,$C$と$\ell$の接点を$\mathrm{P}$とする.

(1)$\mathrm{OA}$,$\mathrm{AP}$を求めよ.
(2)直線$\mathrm{OA}$と$x$軸のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\angle \mathrm{OAP}=\beta$とおく.$\tan \alpha$,$\tan \beta$を求めよ.
(3)$\ell$の傾きを求めよ.
千葉工業大学 私立 千葉工業大学 2011年 第2問
次の各問に答えよ.

(1)円$C:x^2+y^2-4x+6y+8=0$の中心は$([ア],\ [イウ])$,半径は$\sqrt{[エ]}$である.直線$(m+3)x-my-6=0$が$C$と接するような定数$m$の値は$[オカ]$または$[キ]$である.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.$F=(1-4 \sin \theta) \cos 2\theta$は$t=\sin \theta$を用いて表すと,
\[ F=[ク] t^3-[ケ] t^2-[コ] t+[サ] \]
となる.$F$は$\displaystyle \theta=\frac{[シ]}{[ス]} \pi$のとき,最小値$\displaystyle \frac{[セソ]}{[タ]}$をとる.
福岡大学 私立 福岡大学 2011年 第2問
次の$[ ]$をうめよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{AC}$を$3:2$に内分する点を$\mathrm{N}$,線分$\mathrm{BN}$と$\mathrm{CM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと,$\overrightarrow{\mathrm{AP}}=[ ]$となる.さらに,$\mathrm{AB}=9$,$\mathrm{AC}=6$,$\mathrm{AP}=4$のとき,$\overrightarrow{b}$と$\overrightarrow{c}$の内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値は$[ ]$である.
(2)点$(2,\ -3)$を点$(1,\ -1)$に移し,点$(-1,\ 4)$を点$(7,\ -2)$に移す$1$次変換$f$を表す行列$A$を求めると,$A=[ ]$である.また,原点を中心として一定の角だけ回転する回転移動$g$が点$(3,\ 3)$を点$(1+2 \sqrt{2},\ 1-2 \sqrt{2})$に移すとき,$g$を表す行列$B$を求めると,$B=[ ]$である.
(3)数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$a_2=1$,$a_{n+2}=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定めるとき,$a_7,\ a_8$の値を求めると,$(a_7,\ a_8)=[ ]$である.また,$\displaystyle \sum_{k=1}^\infty \frac{a_k}{2^k}$の値は$[ ]$である.
関西学院大学 私立 関西学院大学 2011年 第2問
座標空間において,原点を$\mathrm{O}$とし,点$\mathrm{A}(1,\ 0,\ 0)$をとる.また,$xy$平面上にあり,中心が原点,半径が$1$の円を$C$とするとき,以下の問いに答えよ.

(1)$C$の$y \geqq 0$の部分にある点$\mathrm{P}$について$\angle \mathrm{AOP}=t (0 \leqq t \leqq \pi)$とする.このとき,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{Q}$を$\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}$を満たす点とし,点$\mathrm{B}(\sqrt{3},\ 1,\ 1)$をとる.このとき,内積$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{BQ}}$を求めよ.また,$|\overrightarrow{\mathrm{BP}}|^2=m-n \sin (t+\alpha)$となるような定数$\displaystyle m,\ n,\ \alpha \left( \text{ただし,} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$を求めよ.
(3)$\angle \mathrm{PBQ}=\theta$とおくとき,$\cos \theta$の最大値と最小値,およびそれらのときの$t$の値を求めよ.
(4)$\cos \theta$が上で求めた最小値をとるとき,三角形$\mathrm{PBQ}$の面積を求めよ.
津田塾大学 私立 津田塾大学 2011年 第1問
次の問いに答えよ.

(1)中心の$x$座標が$a$で,$2$点$(4,\ 0)$,$(0,\ 2)$を通る円の方程式を求めよ.
(2)$x \geqq 0$,$y \geqq 0$のとき,$(x+y)^3 \leqq 4(x^3+y^3)$が成り立つことを示せ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。