タグ「中心」の検索結果

5ページ目:全588問中41問~50問を表示)
電気通信大学 国立 電気通信大学 2016年 第3問
座標空間に$3$点$\mathrm{A}(-1,\ -1,\ 2)$,$\mathrm{B}(1,\ 1,\ 2)$,$\mathrm{C}(1,\ -1,\ -2)$をとる.線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,原点$\mathrm{O}$を中心として$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面を$S$とするとき,以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OM}}$,$\overrightarrow{\mathrm{CM}}$をそれぞれ成分で表せ.
(2)$\angle \mathrm{AMC}$の大きさ$\theta$を$0 \leqq \theta \leqq \pi$の範囲で求めよ.
(3)三角形$\mathrm{ABC}$の面積を求めよ.
(4)原点$\mathrm{O}$から三角形$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろす.線分$\mathrm{OH}$の長さを求めよ.
(5)点$\mathrm{P}$が球面$S$上を動くとき,四面体$\mathrm{ABCP}$の体積の最大値を求めよ.
南山大学 私立 南山大学 2016年 第3問
$\mathrm{O}$を原点とする座標空間に$4$点$\mathrm{A}(2,\ 0,\ 4)$,$\mathrm{B}(0,\ 4,\ 0)$,$\mathrm{C}(3,\ 1,\ 0)$,$\mathrm{D}(-1,\ 0,\ 1)$がある.

(1)$\angle \mathrm{BCD}$を求めよ.
(2)$\triangle \mathrm{BCD}$の面積$S$を求めよ.
(3)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を通る球面の半径と中心の座標を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
中心の座標が$(1,\ 1)$,半径が$2 \sqrt{2}$である座標平面上の円を$C$とする.$C$上の点$\mathrm{P}(x,\ y)$に対して$t=x+y$とおく.

(1)$\mathrm{P}(x,\ y)$が$C$上を動くとき$t$が取り得る値の範囲は$[$1$][$2$] \leqq t \leqq [$3$][$4$]$である.特に$t=0$のとき,$x^2+y^2=[$5$]$が成り立つ.
(2)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$xy$の値は$t=[$6$]$のとき最小値$\displaystyle \frac{[$7$][$8$]}{[$9$]}$をとる.
(3)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$x^3+y^3$の値は$t=[$10$]+\sqrt{[$11$][$12$]}$のとき最大になる.
早稲田大学 私立 早稲田大学 2016年 第2問
点$\mathrm{F}(0,\ 1)$を通り,直線$y=-1$に接する円の中心が描く軌跡を曲線$C$とする.このとき,曲線$C$を表す方程式は
\[ y=\frac{1}{[ウ]}x^2 \]
となる.また,曲線$C$上に$x$座標が正である点$\mathrm{P}$をとる.線分$\mathrm{FP}$の長さが$4$となるとき,曲線$C$の点$\mathrm{P}$における接線と曲線$C$および$y$軸とで囲まれる図形の面積は$[エ] \sqrt{[オ]}$となる.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の問いに答えよ.

(1)整式$P(x)$は実数を係数にもつ$x$の$3$次式であり,$x^3$の係数は$1$である.$P(x)$を$x-7$で割ると$8$余り,$x-9$で割ると$12$余る.方程式$P(x)=0$は$a+bi$を解に持つ.$a,\ b$は$1$桁の自然数であり,$i$は虚数単位とする.
ただし$a,\ b$の組み合わせは,$2a+b$が連続する$2$つの整数の積の値と等しくなるもののうち,$a-b$が最大となるものとする.このとき,

(i) 整式$P(x)$を$(x-7)(x-9)$で割ると,余りは$[$1$]x-[$2$]$である.
(ii) $a=[$3$]$,$b=[$4$]$であり,方程式$P(x)=0$の実数解は$[$5$]$である.

(2)$xy$平面上に曲線$C_1:y=-x^2-x+8$がある.$C_1$上の動点$\mathrm{A}$を点$(1,\ 2)$に関して対称移動した点$\mathrm{B}$の軌跡を$C_2$とする.
$C_1$と$C_2$の$2$つの交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とし,また,$C_1,\ C_2$と直線$x=k$との交点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とする.ただし,$k$は$\alpha<k<\beta$を満たす実数とする.このとき,

(i) $C_2$の方程式は$y=x^2-[$6$]x+[$7$]$である.

(ii) 三角形$\mathrm{QRS}$の面積は$\displaystyle k=\frac{[$8$]}{[$9$]}$で最大となる.


(3)$xy$平面上に,原点$\mathrm{O}$を中心とする単位円$C$と,$y$軸の正の部分を始線として点$\mathrm{O}$を中心に回転する$2$つの動径$L_1,\ L_2$がある.円$C$と$L_1,\ L_2$との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.動径$L_1,\ L_2$の表す角をそれぞれ$\theta_1,\ \theta_2$とおき,$\theta_1=2\pi t,\ \theta_2=-\pi t$とする.ただし$t$は,$t \geqq 0$を満たす実数である.このとき,

(i) 点$\mathrm{P}$と点$\mathrm{Q}$が一致する$t$のうち,$t=0$を除く最小の$t$の値は$\displaystyle \frac{[$10$]}{[$11$]}$である.

(ii) 点$\mathrm{P}$の$y$座標と点$\mathrm{Q}$の$y$座標の和の最小値は$\displaystyle \frac{[$12$][$13$]}{[$14$]}$である.


(4)直角三角形$\mathrm{AOB}$($\angle \mathrm{AOB}={90}^\circ$)に内接する半径$r$の円の中心を$\mathrm{P}$とする.辺$\mathrm{AB}$と円の接点を$\mathrm{Q}$とし,線分$\mathrm{AQ}$の長さを$a$,線分$\mathrm{BQ}$の長さを$b$とする.三角形$\mathrm{AOB}$に対して,自然数$l,\ m,\ n (n<m<l)$は,$l \overrightarrow{\mathrm{OP}}+m \overrightarrow{\mathrm{AP}}+n \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たす.このとき,

(i) 三角形$\mathrm{AOB}$の$3$辺の長さの合計は$[$15$]a+[$16$]b+[$17$]r$である.

(ii) $l=17$のとき,$m=[$18$][$19$]$,$n=[$20$]$であり,$\displaystyle \frac{a}{b}=\frac{[$21$]}{[$22$][$23$]}$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
次の$[ ]$にあてはまる最も適当な数または式を記入しなさい.

(1)円$x^2+y^2-6x+12y+25=0$を$C_1$とし,中心が原点で,円$C_1$に外接する円を$C_2$とする.このとき円$C_2$の半径は$[ケ]$である.また$2$つの円$C_1$,$C_2$の共有点の座標は$[コ]$である.
(2)不等式$3^{2x}+1<3^{x+2}+3^{x-2}$を解くと,$[サ]<x<[シ]$である.
(3)自然数$n$に対して$m \leqq \log_2 n<m+1$を満たす整数$m$を$a_n$で表すことにする.このとき$a_{2016}=[ス]$である.また,自然数$k$に対して$a_n=k$を満たす$n$は全部で$[セ]$個あり,そのような$n$のうちで最大のものは$n=[ソ]$である.さらに$\displaystyle \sum_{n=1}^{2016}a_n=[タ]$である.
(ヒント:$2^{10}=1024$)
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
以下の問いに答えよ.

(1)$k$を自然数とする.数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{S_n\}$が初項$k$,公比$k$の等比数列であるとする.
\begin{itemize}
$k=3$の場合,$a_n \geqq 5000$を満たすのは$n \geqq [$1$]$のときである.
$a_n$が$100$の倍数となる$n$が存在するような$10$以下の自然数$k$は$[$2$]$つあり,このとき,$a_n$が$100$の倍数となるのは$n \geqq [$3$]$のときである.
\end{itemize}
(2)$\alpha$を$0 \leqq \alpha<2\pi$を満たす定数とする.実数$t$が$0 \leqq t \leqq 2\pi$の範囲で変化するとき,座標平面上の点$\mathrm{P}(\sin t,\ \sin (t+\alpha))$の軌跡を$\mathrm{T}$とする.
\begin{itemize}
$\mathrm{T}$が線分となるような$\alpha$の値をすべて記せ.
$\mathrm{T}$が原点を中心とする円となるような$\alpha$の値をすべて記せ.
\end{itemize}
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$a$を正の実数,$b,\ c$を実数とする.$f(x)=ax^2+bx+c$とし,$f^\prime(x)$を$f(x)$の導関数とする.

(1)放物線$y=f(x)$と直線$y=f^\prime(x)$が接するための必要十分条件は
\[ b^2=[ウ] \qquad \cdots\cdots(\mathrm{A}) \]
である.
(2)条件$(\mathrm{A})$が成り立つとき,その接点の座標は
\[ \left( [$4$]-\frac{b}{[$5$]a},\ [$6$]a \right) \]
である.このとき,直線$y=f^\prime(x)$は放物線$y=-f(x)$とも接し,その接点$\mathrm{P}$の座標は
\[ \left( [$7$][$8$]-\frac{b}{[$9$]a},\ [$10$][$11$]a \right) \]
である.
(3)直線$y=f^\prime(x)$が原点を中心とする半径$\sqrt{2}$の円$\mathrm{O}$と接するための必要十分条件は
\[ b^2=[エ] \qquad \cdots\cdots(\mathrm{B}) \]
である.この条件が成り立つとき,その接点を$\mathrm{Q}$とする.
(4)条件$(\mathrm{A}),\ (\mathrm{B})$が成り立ち,さらに点$\mathrm{P}$が点$\mathrm{Q}$と一致するのは,
\[ a=\frac{[$12$]}{[$13$]},\quad b=[$14$][$15$],\quad c=\frac{[$16$]}{[$17$]} \]
のときである.このとき,円$\mathrm{O}$は放物線$y=f(x)$とただ$1$つの共有点$([$18$],\ [$19$])$をもち,放物線$y=f(x)$,直線$y=f^\prime(x)$および円$\mathrm{O}$で囲まれた図形の面積は
\[ \frac{[$20$]}{[$21$]}-\frac{[$22$]}{[$23$]} \pi \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
球面$S:x^2-8x+y^2-4y+z^2+6z+20=0$は点$\mathrm{A}([$24$],\ [$25$],\ [$26$])$で$xy$平面と接し,球面$S$と$zx$平面との交わりは中心$\mathrm{B}([$27$],\ [$28$],\ [$29$][$30$])$,半径$\sqrt{[$31$]}$の円である.

球面$S$の中心を$\mathrm{C}$,線分$\mathrm{AB}$を$\sqrt{3}:2$に外分する点を$\mathrm{P}$とすると,$\mathrm{P}$の座標は
\[ \left( [$32$],\ [$33$]+[$34$] \sqrt{[$35$]},\ [$36$]+[$37$] \sqrt{[$38$]} \right) \]
であり,$\displaystyle \angle \mathrm{ACP}=\frac{[$39$]}{[$40$]} \pi$(ただし$0 \leqq \angle \mathrm{ACP} \leqq \pi$)である.また,三角形$\mathrm{BPC}$の辺および内部が球面$S$と交わってできる図形は,長さ$\displaystyle \frac{[$41$]}{[$42$]} \pi$の円弧である.
早稲田大学 私立 早稲田大学 2016年 第2問
正方形$\mathrm{ABCD}$を底面,点$\mathrm{P}$を頂点とする正四角錐$\mathrm{PABCD}$に内接する球について考える.ただし,正四角錐とは,頂点と底面の正方形の中心を結ぶ直線が底面と垂直になる角錐である.線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$および線分$\mathrm{PM}$の長さをそれぞれ$a,\ b$とする.次の問に答えよ.

(1)内接する球の半径を$a,\ b$を用いて表せ.
(2)$\displaystyle x=\frac{b}{a}$と定めるとき,$\displaystyle \frac{\text{内接する球の表面積}}{\text{正四角錐$\mathrm{PABCD}$の表面積}}$を$x$で表わし,その最大値を求めよ.
(3)$(2)$で最大値をとるときの正四角錐$\mathrm{PABCD}$の体積を$a$を用いて表せ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。