タグ「中心」の検索結果

49ページ目:全588問中481問~490問を表示)
上智大学 私立 上智大学 2011年 第2問
実数$k$に対し,円$C:x^2+y^2+(k-1)x-ky-1=0$を考える.

(1)円$C$の半径が最も小さくなるのは$\displaystyle k=\frac{[キ]}{[ク]}$のときであり,その半径は$\displaystyle \frac{[ケ] \sqrt{[コ]}}{[サ]}$である.
(2)円$C$の中心の軌跡は
\[ [シ]x+[ス]y+1=0 \]
である.
(3)任意の実数$k$に対し,円$C$は必ず
\[ \left( \frac{[セ]}{[ソ]},\ \frac{[タ]}{[チ]} \right),\quad \left( [ツ],\ [テ] \right) \]
を通る.ただし$\displaystyle \frac{[セ]}{[ソ]}<[ツ]$である.
$k=3$のとき,この$2$点における円の接線の交点は
\[ \left( \frac{[ト]}{[ナ]},\ \frac{[ニ]}{[ヌ]} \right) \]
である.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~セに当てはまる数を記入せよ.

(1)$(x+1)^5$の$x^3$の係数は$[ア]$である.
(2)中心を$\mathrm{O}$とする円の円周上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\mathrm{AB}=3$とするとき,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AO}}$の内積は,$[イ]$である.
(3)$y=x^2+px+q (pq \neq 0)$のグラフが点$(1,\ 1)$を通り,$x$軸に接するとき,$p=[ウ]$,$q=[エ]$である.
(4)$120$人の学生の通学手段について調査したところ,電車を利用する学生が$83$人,バスを利用する学生が$48$人,電車もバスも利用しない学生が$28$人であった.電車とバスの両方を利用する学生は$[オ]$人である.
(5)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の$6$枚のカードをよくきって,$6$枚を$1$列に並べるとき,$\mathrm{A}$と$\mathrm{B}$が隣り合う確率は$[カ]$である.
(6)$2$次方程式$x^2-4x-2=0$の解を$\alpha,\ \beta$とする.$\displaystyle \frac{\alpha^2}{\beta}$と$\displaystyle \frac{\beta^2}{\alpha}$を解とする$2$次方程式を$x^2+px+q=0$とするとき,$p=[キ]$,$q=[ク]$である.
(7)方程式$\log_2 \sqrt[3]{x}-\log_4 4x^3+8=0$の解は$x=[ケ]$である.
(8)$x+x^{-1}=7$のとき,$x^{\frac{1}{4}}+x^{-\frac{1}{4}}$は$[コ]$である.ただし,$x>0$とする.
(9)$100$以下の自然数の中で,$4$で割ると$1$余る数の総和は$[サ]$である.
\mon $f^\prime(x)$を$f(x)$の導関数とする.$f^\prime(x)=3x^2-4x-1$,$f(1)=0$を満たすとき,$f(x)$を$f(x)=x^3+px^2+qx+r$とおくと,$p=[シ]$,$q=[ス]$,$r=[セ]$である.
日本女子大学 私立 日本女子大学 2011年 第4問
点$\mathrm{O}$を中心とし,長さ$2r$の線分$\mathrm{AB}$を直径とする円の周上を動く点$\mathrm{P}$がある.$\triangle \mathrm{ABP}$の面積を$S_1$,扇形$\mathrm{OPB}$の面積を$S_2$とするとき,次の問いに答えよ.

(1)$\displaystyle \angle \mathrm{PAB}=\theta (0<\theta<\frac{\pi}{2})$とするとき,$S_1$と$S_2$を求めよ.
(2)$\mathrm{P}$が$\mathrm{B}$に限りなく近づくとき,$\displaystyle \frac{S_1}{S_2}$の極限値を求めよ.
関西大学 私立 関西大学 2011年 第2問
点$(a,\ b) (a>0,\ b>0)$を中心とする円$C$が直線$y=2x$に点$\mathrm{P}$で接するとする.次の問いに答えよ.

(1)接点$\mathrm{P}$の座標を$a,\ b$を用いて表せ.
(2)円$C$がさらに$y=x$にも接するとする.$b$を$a$を用いて表せ.
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)円$x^2+2x+y^2-6y-6=0$の半径は$[ア]$であり,中心の座標は$[イ]$である.

(2)$\displaystyle 2 \log_84+\log_3 \sqrt{15}-\frac{1}{\log_59}$を計算すると$[ウ]$である.

(3)$0 \leqq x<2\pi$とする.方程式$\cos 2x-5 \cos x+3=0$を解くと,$x=[エ],\ [オ]$である.
(4)$0,\ 1,\ 2,\ 3,\ 4$の$5$つの数字から同じ数字を繰り返し使わずに作れる$3$桁の偶数は全部で$[カ]$個ある.
上智大学 私立 上智大学 2011年 第2問
$a$を実数とし,$2$つの放物線
\[ C:y=-x^2+4,\quad C_a:y=(x-a)^2+a \]
を考える.

(1)$C$と$C_a$が異なる$2$点で交わるための条件は,
\[ -a^2+[サ]a+[シ]>0 \]
であり,したがって
\[ [ス]<a<[セ] \]
である.このとき
\[ b=\sqrt{-a^2+[サ]a+[シ]} \]
とおくと,$(a,\ b)$は中心が$([ソ],\ [タ])$で,半径が$[チ]$の円周上にある.
(2)$[ス]<a<[セ]$のとき,$C$と$C_a$との交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とすると,
\setstretch{2}
\[ \begin{array}{rcl}
\alpha+\beta &=& [ツ]a+[テ] \\
2\alpha\beta &=& [ト]a^2+[ナ]a+[ニ] \\
\beta-\alpha &=& [ヌ]b+[ネ]
\end{array} \]
\setstretch{1.3}
である.
(3)$C$と$C_a$により囲まれた図形の面積は,$a=[ノ]$のときに最大値$[ハ]$をとる.
立教大学 私立 立教大学 2011年 第3問
座標平面上の点$\mathrm{A}(1,\ 1)$を中心とする円$(x-1)^2+(y-1)^2=1$上を,点$\mathrm{P}_0(2,\ 1)$から出発して一定の速度で反時計回りに動く点$\mathrm{P}$と,座標平面上の点$\mathrm{B}(-1,\ -1)$を中心とするもう$1$つの円$(x+1)^2+(y+1)^2=1$上を,点$\mathrm{Q}_0(-1,\ 0)$から出発して反時計回りに動く点$\mathrm{Q}$について考える.点$\mathrm{P}$と点$\mathrm{Q}$が各円周上を進む速度は等しいものとする.このとき,次の問に答えよ.

(1)図に示すように$\angle \mathrm{P}_0 \mathrm{AP}$ならびに$\angle \mathrm{Q}_0 \mathrm{BQ}$を$\theta$とするとき,点$\mathrm{P}$と点$\mathrm{Q}$それぞれの座標を$\theta$を用いて表せ.
(2)線分$\mathrm{PQ}$の長さの最大値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_1$と点$\mathrm{Q}$の位置$\mathrm{Q}_1$それぞれの座標を求めよ.また,線分$\mathrm{PQ}$の長さの最小値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_2$と点$\mathrm{Q}$の位置$\mathrm{Q}_2$それぞれの座標を求めよ.
(3)$(2)$で求めた$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{Q}_1$,$\mathrm{Q}_2$について,$4$点$\mathrm{P}_1$,$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{P}_2$がつくる四角形の面積を求めよ.
(図は省略)
北海道文教大学 私立 北海道文教大学 2011年 第5問
$\mathrm{O}$を中心とする半径$2$の円の内部の点$\mathrm{P}$を通る弦$\mathrm{AB}$について$\mathrm{PA} \cdot \mathrm{PB}=1$であるとき,線分$\mathrm{OP}$の長さを求めなさい.
上智大学 私立 上智大学 2011年 第2問
底面の円の半径が$3 \; \mathrm{cm}$,高さが$6 \; \mathrm{cm}$の直円錐を考える.直円錐の頂点を$\mathrm{P}$,底面の円の中心を$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{O}$とする.底面の円の円周を$C_1$,$\mathrm{O}$を通り底面と平行な平面が直円錐と交わってできる円の円周を$C_2$とする.$2$点$\mathrm{A}$,$\mathrm{B}$がそれぞれ$C_1$,$C_2$上を頂点$\mathrm{P}$から見て左回りに移動している.点$\mathrm{A}$の速さは$3 \pi \,\mathrm{cm}/$秒,点$\mathrm{B}$の速さは$\pi \,\mathrm{cm}/$秒であり,時刻$t=0$において,$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{A}$は一直線上にあるとする.

(1)$\mathrm{A}$の角速度は$[コ] \pi$ラジアン$/$秒であり,$\mathrm{B}$の角速度は$\displaystyle \frac{[サ]}{[シ]} \pi$ラジアン$/$秒である.ただし,$\mathrm{A}$の角速度とは,動径$\mathrm{QA}$が$1$秒間に回転する角の大きさのことであり,$\mathrm{B}$の角速度とは,動径$\mathrm{OB}$が$1$秒間に回転する角の大きさのことである.
(2)線分$\mathrm{AB}$の長さを時刻$t$の関数で表すと
\[ \sqrt{[ス]-[セ] \cos \frac{\pi}{2}t } \mathrm{cm} \]
である.
(3)$\cos \angle \mathrm{AOB}$を時刻$t$の関数で表すと
\[ \frac{[ソ]}{\sqrt{[タ]}} \cos \frac{\pi}{2} t \]
である.
(4)三角形$\mathrm{AOB}$の面積を時刻$t$の関数で表すと
\[ \sqrt{[チ]-[ツ] \cos^2 \frac{\pi}{2}t } \mathrm{cm}^2 \]
である.
(5)$3$点$\mathrm{A}$,$\mathrm{O}$,$\mathrm{B}$を含む平面を$S$とする.$\mathrm{Q}$を通り,$S$と直交する直線を$\ell$とし,$\ell$と$S$の交点を$\mathrm{H}$とする.$\displaystyle t=\frac{1}{3}$のとき,線分$\mathrm{QH}$の長さは
\[ \frac{[テ]}{[ト]} \mathrm{cm} \]
である.
上智大学 私立 上智大学 2011年 第2問
$\mathrm{O}$を原点とする座標平面上に,放物線$F:y=x^2+1$および,点$\mathrm{A}(5,\ 0)$を中心とする半径$4$の円$C$がある.$F$上に点$\mathrm{P}(t,\ t^2+1)$,$C$上に点$\mathrm{Q}(a,\ b)$をとる.

(1)$\mathrm{P}$における放物線$F$の接線と直線$\mathrm{AP}$とが直交するとき,線分$\mathrm{AP}$の長さは$[タ] \sqrt{[チ]}$である.
(2)$\mathrm{Q}$を固定し,$\mathrm{P}$のみが動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle t=\frac{[ツ]}{[テ]} \frac{b}{a}$で最小値をとる.その最小値を$a$で表すと
\[ \frac{1}{8} \left( [ト]a+\frac{[ナ]}{a}+[ニ] \right) \]
である.
(3)$\mathrm{P}$,$\mathrm{Q}$がともに動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle a=\frac{[ヌ]}{[ネ]} \sqrt{[ノ]}$で最小値
\[ \frac{[ハ]}{[ヒ]}+\frac{[フ]}{[ヘ]} \sqrt{[ホ]} \]
をとる.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。