タグ「中心」の検索結果

48ページ目:全588問中471問~480問を表示)
金沢工業大学 私立 金沢工業大学 2011年 第4問
円$x^2+y^2+4x-2y-4=0$を$C$とし,直線$y=-x+2$を$\ell$とする.

(1)円$C$の中心$\mathrm{P}$の座標は$([クケ],\ [コ])$であり,半径は$[サ]$である.
(2)直線$\ell$に関して点$\mathrm{P}$と対称な点$\mathrm{Q}$の座標は$([シ],\ [ス])$である.
(3)点$\mathrm{P}$と直線$\ell$の間の距離は$\displaystyle \frac{[セ]}{[ソ]} \sqrt{[タ]}$である.
(4)円$C$と直線$\ell$の$2$つの共有点の間の距離は$[チ] \sqrt{[ツ]}$である.
(5)点$\mathrm{Q}$を中心とし,円$C$と同じ半径をもつ円を$C^\prime$とすると,$2$つの円$C$と$C^\prime$の共通部分の面積は$\displaystyle \frac{[テ]}{[ト]} \pi-[ナ]$である.
上智大学 私立 上智大学 2011年 第3問
$xyz$空間内の正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$はすべて原点$\mathrm{O}$を中心とする半径$1$の球面$S$上にある.$\mathrm{A}$の座標は$(0,\ 0,\ 1)$であり,$\mathrm{B}$の$x$座標は正,$y$座標は$0$である.また,$\mathrm{C}$の$y$座標は$\mathrm{D}$の$y$座標より大きい.

(1)$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$z$座標は$\displaystyle \frac{[ニ]}{[ヌ]}$である.

(2)$\mathrm{C}$の$x$座標は$\displaystyle \frac{[ネ]}{[ノ]} \sqrt{[ハ]}$である.

(3)$\mathrm{O}$を端点とし$\triangle \mathrm{ABC}$の重心を通る半直線が$S$と交わる点を$\mathrm{P}$とする.線分$\mathrm{AP}$の長さは$\displaystyle \frac{[ヒ]}{[フ]} \sqrt{[ヘ]}$,ベクトル$\overrightarrow{\mathrm{AP}}$とベクトル$\overrightarrow{\mathrm{BP}}$の内積は$[ホ]$である.

以後,四面体$\mathrm{PABC}$を$V_\mathrm{p}$で表す.

(4)$\triangle \mathrm{APB}$の面積は$\displaystyle \frac{[マ]}{[ミ]}$である.

(5)$(3)$で$\triangle \mathrm{ABC}$に対して点$\mathrm{P}$および四面体$V_\mathrm{p}$を定めたときと同様に,$\triangle \mathrm{ACD}$,$\triangle \mathrm{ABD}$,$\triangle \mathrm{BCD}$に対してそれぞれ点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{T}$および四面体$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$を定める.四面体$\mathrm{ABCD}$と$V_\mathrm{P}$,$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$をあわせた立体を$V$とすると,$V$の表面積は$[ム]$であり,$V$の体積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
東北学院大学 私立 東北学院大学 2011年 第3問
$2$つの円$(x+2)^2+(y+2)^2=1$と$(x-6)^2+(y-4)^2=9$を内部または周上に含む円で,半径が最小のものを$C$とする.次の問いに答えよ.

(1)円$C$の中心$\mathrm{A}$の座標と半径$r$を求めよ.
(2)点$\mathrm{P}(x,\ y)$が円$C$の周上を動くとき,$x+2y$の最大値と最小値を求めよ.
南山大学 私立 南山大学 2011年 第2問
正の実数$a,\ b$について,座標平面上に$2$つの円$C_1:x^2+y^2-8x-20y+91=0$,$C_2:x^2+y^2+4x-4y+8-a=0$と放物線$D:y=b(x-4)^2-2$を考える.

(1)$C_1$の中心の座標と半径を求めよ.
(2)$C_1$が$C_2$の外部にあるとき,$a$のとりうる値の範囲を求めよ.
(3)$C_1$と$C_2$が$1$点$\mathrm{P}$を共有し,$\mathrm{P}$を除いて$C_1$が$C_2$の外部にあるとき,$\mathrm{P}$の座標と$\mathrm{P}$における$C_2$の接線の方程式を求めよ.
(4)$C_1$と$D$が異なる$2$点のみを共有するとき,$b$の値を求めよ.
南山大学 私立 南山大学 2011年 第2問
中心の座標がそれぞれ$(-1,\ a)$,$(1,\ b)$で,ともに$x$軸に接している$2$つの円がある.これらの円は点$\mathrm{P}$で互いに接している.ただし,$a,\ b>0$とする.

(1)$b$を$a$で表せ.
(2)$\mathrm{P}$の座標を$a$で表せ.
(3)$\mathrm{P}$で$2$つの円に接する直線はある定点を通る.この定点の座標を求めよ.
(4)$\mathrm{P}$の軌跡を求めよ.
(図は省略)
明治大学 私立 明治大学 2011年 第4問
次の空欄$[ア]$から$[ス]$に当てはまるものを入れよ.ただし連続した空欄$[シス]$は$2$桁の数字をあらわす.

$a$を正の定数とする.$2$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(t,\ t^2)$の間の距離を$L(t)$とする.$L(t)$は$\displaystyle a \leqq \frac{1}{2}$の場合は$t=[ア]$で最小値$[イ]$をとり,$\displaystyle a>\frac{1}{2}$の場合は$|t|=[ウ]$のとき最小値$[エ]$をとる.
$\mathrm{A}(0,\ a)$を中心とする半径$1$の円$C_1$と放物線$C_2:y=x^2$が$2$点で接しているとき$\displaystyle a=\frac{[オ]}{[カ]}$であり,接点の座標は
\[ \left( \frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right),\quad \left( -\frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.このとき,円$C_1$と放物線$C_2$で囲まれた図形(下の図の灰色の部分)を$y$軸のまわりに$1$回転して得られる回転体の体積は$\displaystyle \frac{[サ]}{[シス]}\pi$である.
ただし,$2$つの曲線が共有点$\mathrm{P}$をもち,$\mathrm{P}$における$2$つの曲線の接線が一致す
るとき,これら$2$つの曲線は$\mathrm{P}$で接しているといい,$\mathrm{P}$を接点という.
(図は省略)
甲南大学 私立 甲南大学 2011年 第2問
座標平面上において,原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1+\sqrt{3})$,点$\mathrm{B}(\sqrt{3},\ 2+\sqrt{3})$,点$\mathrm{C}(1+\sqrt{3},\ 0)$がある.このとき,以下の問いに答えよ.

(1)直線$\mathrm{AB}$を表す方程式と$\angle \mathrm{OAB}$の値を求めよ.
(2)$\angle \mathrm{OAB}$の二等分線の方程式を求めよ.
(3)中心が第$1$象限にあり,直線$\mathrm{AB}$,$x$軸,$y$軸に接する円$P$の方程式を求めよ.
(4)傾きが正で,かつ点$\mathrm{C}$を通り,$(3)$で求めた円$P$と接する直線$\ell$の方程式を求めよ.
龍谷大学 私立 龍谷大学 2011年 第2問
図のように,原点$\mathrm{O}$を中心とする半径$1$の円$C$上に$2$点$\mathrm{A}$,$\mathrm{B}$がある.点$\mathrm{A}$は第$3$象限にあり,点$\mathrm{A}$と点$\mathrm{B}$は$y$軸に関して対称である.また,$\angle \mathrm{AOB}=60^\circ$である.
(図は省略)

(1)点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
(2)点$\mathrm{A}$における円$C$の接線$\ell$の方程式を求めなさい.
(3)点$\mathrm{A}$と点$\mathrm{B}$を通る放物線のうち,点$\mathrm{A}$における接線が$\ell$と一致するようなものの方程式を求めなさい.
名城大学 私立 名城大学 2011年 第3問
$xy$平面上に,$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(5,\ 0)$,円$C:x^2+lx+y^2+my+n=0$($l,\ m,\ n$は実数)があり,$C$が$\mathrm{A}$,$\mathrm{B}$を通るとき,次の問に答えよ.

(1)$m$がすべての実数値をとるとき,$C$の中心の軌跡を求めよ.
(2)$m$がすべての実数値をとるとき,$C$の半径の最小値を求めよ.
(3)$C$が$y$軸と接するとき,$C$の方程式を求めよ.
名城大学 私立 名城大学 2011年 第3問
$xy$平面上に,$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(5,\ 0)$,円$C:x^2+lx+y^2+my+n=0$($l,\ m,\ n$は実数)があり,$C$が$\mathrm{A}$,$\mathrm{B}$を通るとき,次の問に答えよ.

(1)$m$がすべての実数値をとるとき,$C$の中心の軌跡を求めよ.
(2)$m$がすべての実数値をとるとき,$C$の半径の最小値を求めよ.
(3)$C$が$y$軸と接するとき,$C$の方程式を求めよ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。