タグ「中心」の検索結果

45ページ目:全588問中441問~450問を表示)
徳島大学 国立 徳島大学 2011年 第4問
$\displaystyle X=\frac{1}{4} \biggl( \begin{array}{cc}
\sqrt{6} & 2\sqrt{2} \\
5\sqrt{2} & 2\sqrt{6}
\end{array} \biggr),\ Y=\biggl( \begin{array}{cc}
-1 & \sqrt{3} \\
\sqrt{3} & -2
\end{array} \biggr)$のとき$A=XY$とする.行列$A^n \ (n=1,\ 2,\ 3,\ \cdots)$の表す移動によって,点$(-10^8,\ \sqrt{3}\times 10^8)$が点P$_n$に移るとする.$\log_{10}2=0.3010$として,次の問いに答えよ.

(1)$A=k \biggl( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \biggr)$を満たす$k$と$\theta$を求めよ.ただし,$k>0$とし,$\theta$は$0 \leqq \theta < 2\pi$とする.
(2)点P$_n$が中心$(0,\ 0)$,半径1の円の内部にある$n$のうちで,最小の$n$の値を求めよ.
(3)不等式$2^8 < \sqrt{x^2+y^2} < 2^{15},\ y>|\,x\,|$の表す領域を$D$とする.点P$_n$が$D$内にある$n$の値をすべて求めよ.
鳥取大学 国立 鳥取大学 2011年 第2問
$xy$平面上の円$C_1:x^2+y^2+ax+by+28=0$は,点A$(2,\ 8)$と点B$(7,\ 7)$を通る.このとき,次の問いに答えよ.

(1)円$C_1$の中心の座標と半径を求めよ.
(2)円$C_1$上の点A,Bにおける接線をそれぞれ$\ell,\ m$とするとき,2直線$\ell,\ m$の交点の座標を求めよ.
(3)$x$の2次関数のグラフ$C_2$は(2)で求めた交点を頂点とし,点Aを通る.このとき$C_2$と$x$軸との交点の座標を求めよ.
大分大学 国立 大分大学 2011年 第2問
直線$\ell_1:y=mx+3 \ (m>0)$が,点A$(5,\ 3)$を中心とする円$C_1$に接している.その接点をPとする.直線$\ell_1$と$y$軸との交点をQ,2点A,Pを通る直線$\ell_2$と$x$軸との交点をRとする.

(1)円$C_1$の半径$r$を$m$を用いて表しなさい.
(2)円$C_1$が$x$軸と異なる2点で交わるような$m$の値の範囲を求めなさい.
(3)線分QRの中点Sの座標を求めなさい.
(4)3点P,Q,Rを通る円$C_2$の中心と円$C_1$の中心との距離を$d$とする.$d$の最小値とそのときの$m$の値を求めなさい.
大分大学 国立 大分大学 2011年 第4問
直線$\ell_1:y=mx+3 \ (m>0)$が,点A$(5,\ 3)$を中心とする円$C_1$に接している.その接点をPとする.直線$\ell_1$と$y$軸との交点をQ,2点A,Pを通る直線$\ell_2$と$x$軸との交点をRとする.

(1)円$C_1$の半径$r$を$m$を用いて表しなさい.
(2)円$C_1$が$x$軸と異なる2点で交わるような$m$の値の範囲を求めなさい.
(3)線分QRの中点Sの座標を求めなさい.
(4)3点P,Q,Rを通る円$C_2$の中心と円$C_1$の中心との距離を$d$とする.$d$の最小値とそのときの$m$の値を求めなさい.
佐賀大学 国立 佐賀大学 2011年 第1問
次の問いに答えよ.

(1)中心が点$(1,\ 2)$,半径が3の円がある.点$\mathrm{P}$がこの円上を動くとき,点$\mathrm{A}(-3,\ 6)$と点$\mathrm{P}$を結ぶ線分$\mathrm{AP}$を$2:1$に内分する点$\mathrm{Q}$の軌跡を求めよ.
(2)5個の数字1,2,3,4,5から異なる3個を取って3桁の自然数を作る.3の倍数にも5の倍数にもならないものはいくつあるか.
鳥取大学 国立 鳥取大学 2011年 第4問
半径$a\;$cmの球$B$を,球の中心を通る鉛直軸に沿って毎秒$v\;$cmの速さで下の方向に動かし,水で一杯に満たされた容器Qに沈めていく.球$B$を沈め始めてから$t$秒後までにあふれ出る水の体積を$V\;$cm$^3$とするとき,次の問いに答えよ.ただし,$a,\ v$は正の定数で,容器$Q$に球$B$を完全に水没させることができるとする.

(1)$V$を$a,\ v,\ t$の式で表せ.また変化率$\displaystyle \frac{dV}{dt}$が最大になるのは,沈め始めてから何秒後か.
(2)容器$Q$は一辺の長さが$b$の正四面体から一面を取り除いた形をしており,開口した面は水平に保たれている.球$B$は完全に水面下に入った瞬間,水面と容器$Q$の3つの面に接するという.$b$を$a$で表せ.
愛知教育大学 国立 愛知教育大学 2011年 第5問
座標空間内で点Q$(a,\ b,\ c)$を中心とする半径$r$の球を$B$とし,$B$は各座標平面と交わる位置にあるとする.$B$が$xy$平面によって切り取られる立体のうち,Qを含む方を$B_1$,切断面を$D_1$とする.また$B$が$xz$平面によって切り取られる図形のうち,Qを含む方を$B_2$,切断面を$D_2$とする.$D_1$の面積が$8\pi$,$D_2$の面積が$12\pi$,$D_1$と$D_2$が交わってできる線分の長さが4のとき,以下の問いに答えよ.

(1)$D_1,\ D_2$のそれぞれの中心と半径を$a,\ b,\ c,\ r$を用いて表せ.
(2)$b,\ c,\ r$の値を求めよ.
(3)$B_1$と$B_2$の共通部分が$yz$平面によって切り取られた切断面を$D_3$とする.$a$を動かしたときの$D_3$の面積の最大値とそのときの点Qの座標Q$(a,\ b,\ c)$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2011年 第3問
$xyz$空間の3点A$(5,\ 0,\ 0)$,B$(4,\ 1,\ 0)$,C$(5,\ 0,\ \sqrt{2})$が定める平面を$T$,$T$上にあって点Aを中心として半径$\sqrt{2}$をもつ円を$U$とする.このとき,以下の問に答えよ.

(1)点Pは円$U$の周上にある.$\angle \text{PAB}=\theta \ (0 \leqq \theta <2\pi)$とするとき,Pの座標$(u,\ v,\ r)$を$\theta$を用いて表せ.
(2)2点D$(10,\ 0,\ 0)$,Pを通る直線が$yz$平面と交わる点をQ$(0,\ Y,\ Z)$とする.$Y$と$Z$を$\theta$を用いて表せ.
(3)(2)の$Y,\ Z$から$\theta$を消去して,Qの軌跡が楕円になることを示せ.また,その楕円の概形を$yz$平面上に図示せよ.
琉球大学 国立 琉球大学 2011年 第2問
中心が$(2,\ 0,\ 1)$,半径が$2\sqrt{5}$の球面が$yz$平面と交わってできる円を$C$とする.次の問いに答えよ.

(1)$C$の中心の座標と半径を求めよ.
(2)点Pは$C$上を動き,点Qは$xy$平面上の直線$x=y$上を動くとする.線分PQの長さの最小値,およびそのときのP,Qの座標を求めよ.
岐阜大学 国立 岐阜大学 2011年 第3問
平面上に点Oを中心とする半径1の円$S$と$S$に内接する正三角形ABCがある.以下の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)平面上の任意の点Pに対して,以下の不等式が成り立つことを示せ.
\[ \text{AP}^2+\text{BP}^2+\text{CP}^2 \geqq 3 \]
また,等号が成り立つのはどのようなときか答えよ.
(4)円$S$の周上の任意の点Qに対して,
\[ (\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OQ}})^2+(\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OQ}})^2=\frac{3}{2} \]
となることを示せ.
(5)円$S$の周上の任意の点Qに対して,
\[ \text{AQ}^4+\text{BQ}^4+\text{CQ}^4 \]
の値を求めよ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。