タグ「中心」の検索結果

44ページ目:全588問中431問~440問を表示)
筑波大学 国立 筑波大学 2011年 第3問
$a$を$\displaystyle 0 < \alpha <\frac{\pi}{2}$を満たす定数とする.円$C : x^2 + (y+ \sin \alpha)^2 = 1$および,その中心を通る直線$\ell :y= (\tan \alpha) x - \sin \alpha$を考える.このとき,以下の問いに答えよ.

(1)直線$\ell$と円$C$の2つの交点の座標を$\alpha$を用いて表せ.
(2)等式
\[ 2\int_{\cos \alpha}^1 \sqrt{1-x^2} \, dx+ \int_{-\cos \alpha}^{\cos \alpha} \sqrt{1-x^2} \, dx = \frac{\pi}{2} \]
が成り立つことを示せ.
(3)連立方程式
\[ \left\{
\begin{array}{l}
y \leqq (\tan \alpha)x-\sin \alpha \\
x^2+(y+\sin \alpha)^2 \leqq 1
\end{array}
\right. \]
の表す$xy$平面上の図形を$D$とする.図形$D$を$x$軸のまわりに1回転させてできる立体の体積を求めよ.
信州大学 国立 信州大学 2011年 第5問
次の問いに答えよ.

(1)次の不定積分を求めよ.
\[ \int \log (1+\sqrt{x}) \, dx \]
(2)点$(1,\ 1)$を中心とする半径$1$の円と,$x$軸および$y$軸で囲まれた図形を,$x$軸の周りに$1$回転してできる立体の体積を求めよ.ただし,回転させる図形は円の中心を含まないものとする.
福井大学 国立 福井大学 2011年 第2問
座標平面上の原点Oを中心とする半径1の円周上に,点Pがある.ただし,Pは第1象限の点である.点Pから$x$軸に下ろした垂線と$x$軸との交点をQ,線分PQを$2:1$に内分する点をRとする.$\theta=\angle \text{QOP}$のときの$\tan \angle \text{QOR}$と$\tan \angle \text{ROP}$の値をそれぞれ$f(\theta),\ g(\theta)$とおく.以下の問いに答えよ.

(1)$f(\theta)$と$g(\theta)$を$\theta$を用いて表せ.
(2)$g(\theta)$の$\displaystyle 0<\theta<\frac{\pi}{2}$における最大値と,そのときの$\theta$の値を求めよ.
滋賀大学 国立 滋賀大学 2011年 第3問
座標平面上の点$(1,\ 0)$をAとする.原点O$(0,\ 0)$を中心とし半径が1の円周上の2点P,Qは,$\displaystyle \angle \text{AOP}=\theta,\ \angle \text{AOQ}=\theta+\frac{\pi}{3},\ 0<\theta<\frac{2\pi}{3}$を満たす.また,点Pから$x$軸に引いた垂線と$x$軸の交点をBとし,点Cを四角形BPQCが平行四辺形になるように定める.ただし,点P,Qの$y$座標は正とする.このとき,次の問いに答えよ.

(1)点Cの座標を$\theta$を用いて表せ.
(2)四角形BPQCの面積の最大値を求めよ.また,そのときの$\theta$の値を求めよ.
鳥取大学 国立 鳥取大学 2011年 第1問
$xy$平面上の円$C_1:x^2+y^2+ax+by+28=0$は,点$\mathrm{A}(2,\ 8)$と点$\mathrm{B}(7,\ 7)$を通る.このとき,次の問いに答えよ.

(1)円$C_1$の中心の座標と半径を求めよ.
(2)円$C_1$上の点$\mathrm{A}$,$\mathrm{B}$における接線をそれぞれ$\ell,\ m$とするとき,$2$直線$\ell,\ m$の交点の座標を求めよ.
(3)$x$の$2$次関数のグラフ$C_2$は$(2)$で求めた交点を頂点とし,点$\mathrm{A}$を通る.このとき$C_2$と$x$軸との交点の座標を求めよ.
奈良女子大学 国立 奈良女子大学 2011年 第6問
直線$\ell:y=x$上を動く点Pと,Pで$\ell$と接する円$C_1$を考える.Pの座標を$(t,\ t)$,$C_1$の中心の座標を$(a,\ b)$とする.ただし$t>0,\ a>b$とする.以下の問いに答えよ.

(1)以下の(i),(ii)に答えよ.

\mon[(i)] $a+b$を$t$を用いて表せ.
\mon[(ii)] $C_1$の半径を$a,\ b$を用いて表せ.

(2)中心が$(1,\ -1)$の円$C_2$も$\ell$と接しているとする.$C_1$が,さらに$C_2$に接しているとする.以下の(i),(ii)に答えよ.

\mon[(i)] $(a+b)^2=8(a-b)$を示せ.
\mon[(ii)] $b$の最大値を求めよ.
鳥取大学 国立 鳥取大学 2011年 第2問
$xy$平面上の円$C_1:x^2+y^2+ax+by+28=0$は,点A$(2,\ 8)$と点B$(7,\ 7)$を通る.このとき,次の問いに答えよ.

(1)円$C_1$の中心の座標と半径を求めよ.
(2)円$C_1$上の点A,Bにおける接線をそれぞれ$\ell,\ m$とするとき,2直線$\ell,\ m$の交点の座標を求めよ.
(3)$x$の2次関数のグラフ$C_2$は(2)で求めた交点を頂点とし,点Aを通る.このとき$C_2$と$x$軸との交点の座標を求めよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。