タグ「中心」の検索結果

39ページ目:全588問中381問~390問を表示)
関西大学 私立 関西大学 2012年 第4問
次の$[ ]$をうめよ.

(1)$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+3x}+x)$の値は$[$①$]$である.
(2)$\displaystyle \sum_{k=1}^n k \comb{n}{k}$を計算すると$[$②$]$となる.
(3)座標空間の原点を$\mathrm{O}$とし,$t$を実数とする.どのような$t$の値に対しても,点$\displaystyle \mathrm{P} \left( \cos t,\ \frac{-1+\sin t}{\sqrt{2}},\ \frac{1+\sin t}{\sqrt{2}} \right)$は原点を中心とする半径$[$③$]$の球面上にある.また,実数$s$に対して,点$\mathrm{Q}(0,\ s,\ -s)$とするとき,$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{QP}}=0$となるような$s$の値は$s=0$と$s=[$④$]$である.
(4)媒介変数表示
\[ x=3^{t+1}+3^{-t+1}+1,\quad y=3^t-3^{-t} \]
で表される図形は,$x,\ y$についての方程式$[$⑤$]=1$で定まる双曲線$C$の$x>0$の部分である.また,$C$の漸近線で傾きが正の漸近線の方程式は$y=[$⑥$]$である.
(5)$\theta$の関数$\displaystyle \sin \theta \sin \left( \theta+\frac{\pi}{3} \right) \sin \left( \theta-\frac{\pi}{3} \right)$は,定数$a,\ b$を用いて$a \sin^3 \theta+b \sin \theta$と表すことができる.$a,\ b$の組$(a,\ b)$は$[$④chi$]$である.
(6)無限級数の和として定義される関数
\[ f(x)=x^2+\frac{x^2}{1+2x^2}+\frac{x^2}{(1+2x^2)^2}+\cdots +\frac{x^2}{(1+2x^2)^n}+\cdots \]
について,$\displaystyle \lim_{x \to 0}f(x)$の値は$[$\maruhachi$]$である.
広島国際学院大学 私立 広島国際学院大学 2012年 第4問
下図のように,中心角$60^\circ$の扇形$\mathrm{OAB}$と正三角形$\mathrm{OCD}$,$\mathrm{OAB}$があり,$\triangle \mathrm{OCD}$は扇形$\mathrm{OAB}$に外接し,扇形の半径は$r$とする.
(図は省略)

(1)$\triangle \mathrm{OAB}$の面積$S_1$を求めなさい.
(2)$\triangle \mathrm{OCD}$の面積$S_2$を求めなさい.
(3)扇形$\mathrm{OAB}$の面積$S_3$を求めなさい.ここで,円周率は$\pi$として計算しなさい.
(4)$S_1<S_3<S_2$より$\pi$の範囲を求めなさい.
北海道薬科大学 私立 北海道薬科大学 2012年 第3問
円$C:x^2+y^2-6x-4y+8=0$と直線$\ell:y=mx-2m-1$($m$は実数)がある.

(1)円$C$の中心$\mathrm{C}$の座標は$([ア],\ [イ])$,半径は$\sqrt{[ウ]}$である.
(2)$\ell$は$m$の値にかかわらず点$\mathrm{A}$を通る.その座標は$([エ],\ [オカ])$である.
(3)$\ell$が$C$と接するのは
\[ m=[キク] \qquad \cdots\cdots① \]

\[ m=\frac{[ケ]}{[コ]} \qquad \cdots\cdots② \]
のときである.
$①$のときの接点を$\mathrm{B}$,$②$のときの接点を$\mathrm{D}$とすると,四角形$\mathrm{ABCD}$から中心角が$\angle \mathrm{BCD}$の扇形を除いた図形の面積は
\[ [サ]-\frac{[シ]}{[ス]} \pi \]
となる.ただし,$0^\circ< \angle \mathrm{BCD}<180^\circ$とする.
大阪工業大学 私立 大阪工業大学 2012年 第2問
座標空間内の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2 \sqrt{2},\ -2 \sqrt{3},\ 2)$,$\mathrm{B}(\sqrt{6}-\sqrt{2},\ 3+\sqrt{3},\ \sqrt{3}-1)$について,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OB}}|$,$|\overrightarrow{\mathrm{AB}}|$および$\angle \mathrm{AOB}$を求めよ.ただし,$0 \leqq \angle \mathrm{AOB} \leqq \pi$とする.
(2)点$\mathrm{O}$を中心とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る円の周上から$\mathrm{A}$,$\mathrm{B}$を含む$6$点をとって正六角形を作る.このとき,$\mathrm{A}$,$\mathrm{B}$以外の$4$頂点の座標を求めよ.
(3)この正六角形の面積$S$を求めよ.
大阪工業大学 私立 大阪工業大学 2012年 第2問
座標空間内の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2 \sqrt{2},\ -2 \sqrt{3},\ 2)$,$\mathrm{B}(\sqrt{6}-\sqrt{2},\ 3+\sqrt{3},\ \sqrt{3}-1)$について,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OB}}|$,$|\overrightarrow{\mathrm{AB}}|$および$\angle \mathrm{AOB}$を求めよ.ただし,$0 \leqq \angle \mathrm{AOB} \leqq \pi$とする.
(2)点$\mathrm{O}$を中心とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る円の周上から$\mathrm{A}$,$\mathrm{B}$を含む$6$点をとって正六角形を作る.このとき,$\mathrm{A}$,$\mathrm{B}$以外の$4$頂点の座標を求めよ.
(3)この正六角形の面積$S$を求めよ.
久留米大学 私立 久留米大学 2012年 第3問
$a$は正の実数で,点$\mathrm{A}(0,\ a)$,点$\mathrm{P}(-2,\ 0)$,点$\mathrm{Q}(2,\ 0)$を頂点とする三角形を考える.この三角形の外接円の中心座標は$[$5$]$,半径は$[$6$]$であり,$a=[$7$]$のとき,外接円の半径は最小値$[$8$]$をとる.
法政大学 私立 法政大学 2012年 第5問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.

$\mathrm{O}$を原点とする座標平面上に点$\mathrm{P}(x,\ y)$がある.

(1)$\theta$は$0<\theta<2\pi$を満たし,行列$A$を
\[ A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
とする.行列$A$が表す移動により,$\mathrm{P}$が点$\mathrm{Q}_1$に移るとするとき,$\mathrm{Q}_1$は$\mathrm{O}$を中心に$\mathrm{P}$を角$[ア]$だけ回転した点である.
ただし,$[ア]$については,以下の$\nagamaruichi$~$\nagamaruroku$から$1$つを選べ.
\[ \nagamaruichi -\theta \qquad \nagamaruni 0 \qquad \nagamarusan \theta \qquad \nagamarushi 2\theta \qquad \nagamarugo 3\theta \qquad \nagamaruroku \theta^2 \]
行列$B$を$\displaystyle B=\frac{1}{3}A$で定める.行列$B$が表す移動により$\mathrm{P}$が点$\mathrm{Q}_2$に移るとするとき,$\displaystyle \mathrm{OQ}_2=\frac{[イ]}{[ウ]} \mathrm{OP}$である.
$\mathrm{P}$が$x$軸方向に$-2$だけ平行移動し,$y$軸方向に$4$だけ平行移動した点を$\mathrm{Q}_3(X,\ Y)$とするとき,
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
[エオ] \\
[カ]
\end{array} \right) \]
が成り立つ.
(2)$\mathrm{P}(x,\ y)$を点$\mathrm{R}(X,\ Y)$に移す移動$T$が
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{lr}
3 & -\sqrt{3} \\
\sqrt{3} & 3
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
14 \\
7
\end{array} \right) \]
で表されている.
移動$T$により,点$\mathrm{B}(p,\ q)$が点$\mathrm{B}(p,\ q)$に移るとするとき,
\[ \left( \begin{array}{c}
p \\
q
\end{array} \right)=\left( \begin{array}{c}
[キク]-\sqrt{[ケ]} \\
[コ] \sqrt{[サ]}-[シ]
\end{array} \right) \]
である.
また,この移動$T$により$\mathrm{P}$が移る点$\mathrm{R}$は,$\theta,\ k$を実数として,点$\mathrm{B}$を中心に$\mathrm{P}$を角$\theta$だけ回転した点を$\mathrm{P}^\prime (x^\prime,\ y^\prime)$とおくと,$\overrightarrow{\mathrm{BR}}=k \overrightarrow{\mathrm{BP}^\prime}$を満たす.つまり,$(1)$の行列$A$を用いると,
\[ \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right)=A \left( \begin{array}{c}
x-p \\
y-q
\end{array} \right),\quad \left( \begin{array}{c}
X-p \\
Y-q
\end{array} \right)=k \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right) \]
が成り立つから,$\displaystyle \theta=\frac{\pi}{[ス]}$,$k=[セ]$である.
ただし,$[セ]$については,以下の$\nagamaruichi$~$\nagamarukyu$から$1$つを選べ.
$\nagamaruichi$ $1$ \qquad $\nagamaruni$ $\sqrt{2}$ \qquad $\nagamarusan$ $\sqrt{3}$ \qquad $\nagamarushi$ $2 \sqrt{2}$ \qquad $\nagamarugo$ $3$
$\nagamaruroku$ $2 \sqrt{3}$ \qquad $\nagamarushichi$ $3 \sqrt{2}$ \qquad $\nagamaruhachi$ $3 \sqrt{3}$ \qquad $\nagamarukyu$ $6$
産業医科大学 私立 産業医科大学 2012年 第2問
座標平面上の原点を$\mathrm{O}$とする.中心が$\mathrm{O}$,半径が$1$の円を$C$とする.円$C$の外部の点を$\mathrm{P}(x_0,\ y_0)$とする.点$\mathrm{P}$を通り円$C$に接する$2$直線を$\ell_1$,$\ell_2$とする.このとき,次の問いに答えなさい.

(1)直線$\ell_1$,$\ell_2$と円$C$の$2$つの接点を結ぶ線分の中点の座標を,点$\mathrm{P}$の座標$x_0$と$y_0$で表しなさい.
(2)直線$\ell_1$,$\ell_2$は$y$軸に平行でないとする.直線$\ell_1$,$\ell_2$と$y$軸の交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,線分$\mathrm{QR}$の中点を$\mathrm{M}$とする.ただし,点$\mathrm{Q}$と$\mathrm{R}$が一致するときは,点$\mathrm{M}$は点$\mathrm{Q}$,$\mathrm{R}$と一致する点とする.このとき,点$\mathrm{M}$の$y$座標が$2$となる点$\mathrm{P}$の描く曲線と直線$\displaystyle y=\frac{1}{\sqrt{3}}x+1$で囲まれる図形の面積を求めなさい.
愛知工業大学 私立 愛知工業大学 2012年 第3問
$xy$平面において,点$(0,\ 2)$を中心とする半径$1$の円に外接し,さらに$x$軸に接する円の中心を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の$y$座標が$2$のとき,$\mathrm{P}$の$x$座標を求めよ.
(2)点$\mathrm{P}$の軌跡$C$の方程式を求めよ.
(3)軌跡$C$,$x$軸,$y$軸および直線$x=2$で囲まれた部分の面積を求めよ.
大阪工業大学 私立 大阪工業大学 2012年 第1問
次の空所を埋めよ.

(1)$\log_{10}a=\log_{100}a^r$,$\log_{10}3+2 \log_{100}4-\log_{10}6=\log_{100}M$と表すとき,$r=[ア]$であり,$M=[イ]$である.
(2)$a$を正の実数とするとき,$x=i(a+i)^3$が実数となる$a$の値は$[ウ]$であり,このとき$x$の値は$[エ]$である.ただし,$i^2=-1$とする.
(3)初項から第$3$項までの和が$21$,初項から第$6$項までの和が$189$である等比数列の初項は$[オ]$であり,公比は$[カ]$である.
(4)点$\mathrm{A}(-1,\ 0)$を通る直線$\ell$が,中心$(1,\ 0)$,半径$1$の円と$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,$\mathrm{AP} \cdot \mathrm{AQ}=[キ]$である.さらに,$\mathrm{PQ}=1$のとき,直線$\ell$と$x$軸のなす角を$\theta$とすると,$\cos \theta=[ク]$である.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。