タグ「中心」の検索結果

37ページ目:全588問中361問~370問を表示)
明治大学 私立 明治大学 2012年 第1問
以下の$[ ]$にあてはまる値を答えよ.

(1)座標平面上の点$\mathrm{P}(x,\ y)$が媒介変数$\theta$を用いて
\[ \begin{array}{l}
x=-\sin \theta+2\cos \theta \\
y= 2\sin \theta+3\cos \theta
\end{array} \]
と表されているとする.このとき,原点を$\mathrm{O}$とすると
\[ \mathrm{OP}^2 = [ア]\sqrt{2} \sin \left( [イ]\theta + \frac{\pi}{[ウ]} \right) + [エ] \]
が成り立つ.
(2)$4$つのサイコロを投げて,出た目の積を$m$とする.

(3)$m=10$となる確率は$\displaystyle\frac{[オ]}{[カ][キ][ク]}$である.また,$m=60$となる確率は$\displaystyle\frac{[ケ]}{[コ][サ][シ]}$である.
(4)$m$が$10$と互いに素になる確率は$\displaystyle\frac{[ス]}{[セ][ソ]}$である.また,$m$が$10$の倍数となる確率は$\displaystyle\frac{[タ][チ][ツ]}{[テ][ト][ナ]}$である.\\
ただし,自然数$a$と$b$が互いに素であるとは,$a$と$b$が$1$以外の公約数を持たないことをいう.

(5)$xy$座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円$\mathrm{O}$に正三角形$\mathrm{ABC}$が内接していて,三点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$はその順に反時計回りに位置している.点$\mathrm{A}$の$x$座標と$y$座標はともに正とする.直線$\mathrm{AC}$と$y$軸は点$\mathrm{D}$で交わっていて,点$\mathrm{D}$を通り直線$\mathrm{BC}$に平行な直線は,円$\mathrm{O}$に点$\mathrm{E}$で接するという.このとき,線分$\mathrm{DE}$の長さは$[ニ]$であって,$\tan (\angle \mathrm{ODE}) = [ヌ]$となる.ゆえに,点$\mathrm{A}$の$y$座標は$[ネ]$である.
明治大学 私立 明治大学 2012年 第3問
$xy$平面上に点$\mathrm{P}(1,\ 0)$を中心とする円:$(x-1)^2+y^2=1$がある.この円周上に$4$点$\displaystyle \mathrm{A}(\frac{9}{5},\ \frac{3}{5})$,$\displaystyle \mathrm{B}(\frac{1}{13},\ \frac{5}{13})$,$\mathrm{C}(\alpha,\ \beta)$,$\mathrm{D}(\gamma,\ \delta)$がある.ただし,$\displaystyle \delta<-\frac{4}{5}$とする.$\angle \mathrm{ABC}=90^{\circ}$であり,三角形$\mathrm{ACD}$の面積は$\displaystyle \frac{63}{65}$であるとする.

(1)点$\mathrm{C}$の座標は,$\displaystyle\left( \frac{[ツ]}{[テ]},\ -\displaystyle\frac{[ト]}{[テ]} \right)$である.

(2)$\mathrm{AB}$の長さは$\displaystyle \frac{[ナニ] \sqrt{[ヌネ]}}{[ヌネ]}$であり,$\displaystyle \cos \angle \mathrm{BDC}=\frac{[ノ] \sqrt{[ハヒ]}}{[ハヒ]}$である.

(3)点$\mathrm{D}$の座標は$\displaystyle \left( \frac{[フヘ]}{[ホマ]},\ -\frac{[ミム]}{[メモ]} \right)$であり,$\displaystyle \cos \angle \mathrm{BPD}=-\frac{[ヤユヨ]}{169}$である.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第3問
$n$を$3$以上の整数とする.$xyz$空間の平面$z=0$上に,$1$辺の長さが$4$の正$n$角形$P$があり,$P$の外接円の中心を$\mathrm{G}$とおく.半径$1$の球$B$の中心が$P$の辺に沿って$1$周するとき,$B$が通過してできる立体を$K_n$とする.このとき,次の問いに答えよ.

(1)$P$の隣り合う$2$つの頂点$\mathrm{P}_1$,$\mathrm{P}_2$をとる.$\mathrm{G}$から辺$\mathrm{P}_1 \mathrm{P}_2$に下ろした垂線と$\mathrm{P}_1 \mathrm{P}_2$との交点を$\mathrm{Q}$とするとき,$\mathrm{GQ}>1$となることを示せ.
(2)次の各問に答えよ.

(i) $K_n$を平面$z=t (-1 \leqq t \leqq 1)$で切ったときの断面積$S(t)$を$t$と$n$を用いて表せ.
(ii) $K_n$の体積$V(n)$を$n$を用いて表せ.

(3)$\mathrm{G}$を通り,平面$z=0$に垂直な直線を$\ell$とする.$K_n$を$\ell$のまわりに$1$回転させてできる立体の体積$W(n)$を$n$を用いて表せ.
(4)$\displaystyle\lim_{n \to \infty}\frac{V(n)}{W(n)}$を求めよ.
上智大学 私立 上智大学 2012年 第2問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,
\[ \mathrm{PA} = \mathrm{PB} = \mathrm{PC} = \mathrm{PD} = \sqrt{5} \]
である四角錐$\mathrm{PABCD}$を考える.
(図は省略)

(1)四角錐$\mathrm{PABCD}$のすべての面に接する球の中心を$\mathrm{O}$とし,$\mathrm{P}$から底面$\mathrm{ABCD}$に垂線$\mathrm{PH}$を下ろすとき
\[ \mathrm{PH}=[テ],\quad \mathrm{OH}=\frac{[ト]}{[ナ]} \]
である.
(2)辺$\mathrm{PB}$の中点を$\mathrm{Q}$,辺$\mathrm{PD}$の中点を$\mathrm{R}$とする.$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{C}$を含む平面と辺$\mathrm{PA}$との交点を$\mathrm{S}$とする.このとき
\[ \mathrm{SP}=\frac{[ニ]}{[ヌ]} \sqrt{[ネ]} \]
である.$\mathrm{S}$から線分$\mathrm{AC}$に垂線$\mathrm{ST}$を下ろすとき
\[ \mathrm{ST}=\frac{[ノ]}{[ハ]},\quad \mathrm{CT}=\frac{[ヒ]}{[フ]} \]
である.さらに,四角形$\mathrm{CRSQ}$の面積は
\[ \frac{[ヘ]}{[ホ]} \sqrt{[マ]} \]
である.
立教大学 私立 立教大学 2012年 第3問
座標平面上に原点$\mathrm{O}$を中心とする半径$1$の円$C$がある.点$\mathrm{P}(p,\ 0)$と点$\mathrm{Q}(0,\ q)$を通る直線が円$C$上の点$\mathrm{R}$において円$C$と接している.ただし,$p>1$,$q>1$とする.このとき,次の問(1)~(4)に答えよ.

(1)$q$を$p$を用いて表せ.
(2)線分$\mathrm{PR}$の長さを$t$とするとき,$p$と$q$を$t$を用いて表せ.
(3)$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を通る円の直径を$d$とするとき,$d^2$を$t$を用いて表せ.
(4)$d$の最小値を求めよ.また,そのときの$p$の値を求めよ.
立教大学 私立 立教大学 2012年 第3問
$a$は$\displaystyle a>\frac{1}{2}$を満たす定数とする.座標平面上の半径$R$の円$C_1:x^2+(y-a)^2=R^2$は,$y>0$の表す領域にある.円$C_1$が放物線$y=x^2$と共有する点は$2$点のみである.このとき,次の問いに答えよ.

(1)共有点の$y$座標および$a$を,$R$を用いて表せ.
(2)円$C_1$と放物線$y=x^2$の共有点における放物線の$2$つの接線のうち傾きが正のものを$\ell$とする.$\ell$の式を$R$を用いて表せ.
(3)点$(0,\ -a)$を中心とする半径$r$の円$C_2$が直線$\ell$と接するとき,$r$を$R$を用いて表せ.
法政大学 私立 法政大学 2012年 第2問
$n$を$2$以上の整数とする.

(1)平面上の平行な$2$直線上に,相異なる点がそれぞれ$n$個ずつある.これらの$2n$個の点から$3$点を選ぶ.

(i) $n=5$のとき,この選び方は全部で$[アイウ]$通りあり,選んだ$3$点が$1$直線上にあるような選び方は$[エオ]$通りある.
(ii) 選んだ$3$点が三角形をつくるような選び方は$\displaystyle \left( [カ]-[キ] \right)$通りある.
ただし,$[カ]$,$[キ]$については,以下の$①$~$\marukyu$からそれぞれ$1$つを選べ.ここで,同じものを何回選んでもよい.
\[ \begin{array}{lllllllll}
① n & & ② 2n & & ③ 3n & & ④ n^2 & & ⑤ 2n^2 \\
⑥ 3n^2 & & ④chi n^3 & & \maruhachi 2n^3 & & \marukyu 3n^3 & &
\end{array} \]

(2)$\mathrm{O}$を中心とする円の円周を等分する$2n$個の点がある.これらの$2n$個の点と点$\mathrm{O}$から$3$点を選ぶ.

(i) $n=3$のとき,選んだ$3$点が三角形をつくるような選び方は$[クケ]$通りある.

(ii) 選んだ$3$点が三角形をつくるような選び方は$\displaystyle \frac{n \left( [コ] n^{[サ]}-[シ] \right)}{[ス]}$通りある.
(iii) $n=12$のとき,選んだ$3$点が正三角形をつくるような選び方は$[セソ]$通りある.
立教大学 私立 立教大学 2012年 第3問
座標平面上に円$x^2+y^2=4$と円上の点$\mathrm{P}(1,\ -\sqrt{3})$,$\mathrm{Q}(-1,\ -\sqrt{3})$が与えられている.$0<\theta<\pi$のとき,円上の点を$\mathrm{R}(2\cos \theta,\ 2\sin \theta)$とし,$\angle \mathrm{QPR}=\alpha,\ \angle \mathrm{PQR}=\beta$とする.このとき,次の問(1)~(3)に答えよ.

(1)点$(2,\ 0)$を$\mathrm{A}$,点$(-2,\ 0)$を$\mathrm{B}$とするとき,弧$\mathrm{PAR}$に対する中心角と弧$\mathrm{QBR}$に対する中心角を$\theta$を用いて表せ.
(2)$\alpha,\ \beta$を$\theta$を用いて表せ.
(3)$2 \sin \alpha=\sqrt{3} \sin \beta$となるときの点$\mathrm{R}$の座標を求めよ.
立教大学 私立 立教大学 2012年 第2問
関数$f(x)=x^3+x^2-16x+3$が定める座標平面上の曲線を$C$とする.この曲線が$y$軸と交わる点を$\mathrm{P}$とし,$f(x)$は$x=a$において極小値をとるとする.$x=a$に対応する曲線上の点を$\mathrm{Q}(a,\ f(a))$とする.このとき,次の問(1)~(3)に答えよ.

(1)点$\mathrm{Q}$の座標を求めよ.
(2)点$\mathrm{R}$を$\mathrm{R}(0,\ f(a))$で定める.$\triangle \mathrm{PQR}$を$y$軸を中心にして回転させて得られる円錐$\mathrm{M}$とそれに内接する円柱$\mathrm{N}$を考える.円柱$\mathrm{N}$の底面は,円柱$\mathrm{M}$の底面に含まれており,半径が$r$であるとき,この円柱$\mathrm{N}$の体積$V$を$r$の式で表せ.
(3)円柱$\mathrm{N}$の体積$V$が最大となるような$r$とそのときの体積を求めよ.
南山大学 私立 南山大学 2012年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円$C$と直線$\ell:y=x$がある.$C$上に点$\mathrm{P}$があり,$x$軸の正の部分を始線として,動径$\mathrm{OP}$の表す正の角を$\theta$とする.ただし,$\displaystyle \frac{1}{4}\pi<\theta<\pi$である.

(1)$\ell$に関して$\mathrm{P}$と対称な点$\mathrm{Q}$をとる.$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)$x$軸に関して$\mathrm{P}$と対称な点$\mathrm{R}$をとる.三角形$\mathrm{PQR}$の面積$S$を$\theta$を用いて表せ.
(3)$S$が最大になるときの$\theta$と$S$の値を求めよ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。