タグ「中心」の検索結果

3ページ目:全588問中21問~30問を表示)
香川大学 国立 香川大学 2016年 第4問
座標平面上の放物線$\displaystyle C:y=\frac{1}{2}x^2$に対し,次の問に答えよ.

(1)半径$r$の円が放物線$C$と$2$点で接するとき,円の中心と$2$つの接点の座標を$r$を用いて表せ.
(2)点$(0,\ 1)$を中心とする半径$1$の円を$C_1$とする.$n=2,\ 3,\ 4,\ \cdots$に対し円$C_n$を,放物線$C$と$2$点で接し,円$C_{n-1}$と外接するものとする.このとき,円$C_n$の半径を$n$を用いて表せ.
大分大学 国立 大分大学 2016年 第3問
中心が原点$\mathrm{O}$で半径が$a$の定円$C_1$上を,半径$\displaystyle \frac{a}{4}$の円$C_2$が内接しながらすべることなく回転する.円$C_2$上の点$\mathrm{P}$は最初に点$\mathrm{A}(a,\ 0)$にあるとする.円$C_2$の中心を$\mathrm{B}$とするとき,以下の問いに答えなさい.

(1)$\angle \mathrm{AOB}=\theta$とする.$\overrightarrow{\mathrm{BP}}$を$a,\ \theta$で表しなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$a,\ \theta$で表しなさい.
(3)$0 \leqq \theta \leqq 2\pi$のとき,動点$\mathrm{P}$が移動する距離を求めなさい.
琉球大学 国立 琉球大学 2016年 第2問
座標平面上の原点$\mathrm{O}$,$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$,$\displaystyle \mathrm{Q} \left( -\frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$の$3$点を通る放物線$y=ax^2+bx+c$を$C_1$とし,原点$\mathrm{O}$を中心とする半径$1$の円を$C_2$とする.次の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)放物線$C_1$と線分$\mathrm{PQ}$で囲まれた図形の面積を求めよ.
(3)放物線$C_1$と円$C_2$で囲まれた図形のうち,放物線$C_1$の上側の部分の面積を求めよ.
島根大学 国立 島根大学 2016年 第2問
次の問いに答えよ.

(1)$2$次方程式$t^2+5t+2=0$の解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2$の値を求めよ.
(2)$u,\ v$を実数とする.$2$次方程式$t^2-ut+v=0$が実数解をもつとき,点$(u,\ v)$の存在範囲を図示せよ.
(3)平面上の点$(a,\ b)$が原点を中心とする半径$1$の円の内部を動くとき,点$(a+b,\ ab)$の動いてできる領域を図示せよ.
島根大学 国立 島根大学 2016年 第3問
複素数平面上に点$\mathrm{O}(0)$,$\mathrm{P}(-1+\sqrt{3}i)$,$\mathrm{Q}(2)$と,これら$3$点を通る円$C$がある.ただし,$i$は虚数単位とする.このとき,次の問いに答えよ.

(1)複素数$-1+\sqrt{3}i$を極形式で表せ.ただし,偏角$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(2)$\angle \mathrm{OPQ}$の大きさを求めよ.
(3)円$C$と虚軸との交点のうち,$\mathrm{O}$でない点を$\mathrm{R}$とする.$\mathrm{R}$を表す複素数を求めよ.
(4)円$C$の中心を表す複素数を$c$とする.点$z$が円$C$上を動くとき,複素数$\displaystyle w=\frac{z-1}{z-c}$がえがく図形を図示せよ.
長崎大学 国立 長崎大学 2016年 第4問
楕円$\displaystyle x^2+\frac{y^2}{a^2}=1 (a>0)$と$y$軸の交点を$\mathrm{A}(0,\ a)$,$\mathrm{B}(0,\ -a)$とする.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,点$\mathrm{P}(\cos \theta,\ a \sin \theta)$はこの楕円上を動く.以下の問いに答えよ.

(1)線分$\mathrm{AP}$の長さを$l$とする.$\displaystyle X=\sin \theta \left( -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2} \right)$のとき,$Y=l^2$となる関数を$Y=f(X)$とする.$f(X)$を$X$の式で表せ.
(2)$0<a<1$の場合.
$(1)$の関数$f(X)$の最大値を$a$を用いて表し,そのときの$X$の値を求めよ.
(3)$a=2$の場合.
$(1)$の関数$f(X)$の値が最大となるときの点$\mathrm{P}$を$\mathrm{P}_1$とする.$f(X)$の最大値と$\mathrm{P}_1$の座標を求めよ.また,点$\mathrm{A}(0,\ 2)$を中心とし点$\mathrm{P}_1$を通る円を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
秋田大学 国立 秋田大学 2016年 第3問
$b>0$,$a=2 \sqrt{3}b$とし,原点を$\mathrm{O}$とする座標平面上の楕円$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$を$E$とする.楕円$E$上の点$\mathrm{P}(x,\ y)$の媒介変数表示は$x=a \cos \theta$,$y=b \sin \theta (0 \leqq \theta<2\pi)$で与えられる.次の問いに答えよ.

(1)点$\mathrm{P}$で楕円$E$と共通の接線をもつ円を考える.このような円のうち,不等式$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2} \geqq 1$の表す領域内にある円を$C$とする.円$C$の半径を$r(\theta)$とするとき,$C$の中心を$\theta$と$r(\theta)$を用いて表せ.
(2)$2d=11b$とし,$4$つの頂点が$(d,\ d)$,$(-d,\ d)$,$(-d,\ -d)$,$(d,\ -d)$である正方形$F$を考える.点$\mathrm{P}$が楕円$E$上を動くとき,$(1)$の円$C$の中心は正方形$F$の周上を動くとする.このとき,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$に対して,$C$の半径$r(\theta)$を求めよ.
(3)$(2)$の$r(\theta)$の$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$における最大値は$\displaystyle \frac{5 \sqrt{5}}{2}b$であることを示せ.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
島根大学 国立 島根大学 2016年 第2問
次の問いに答えよ.

(1)$2$次方程式$t^2+5t+2=0$の解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2$の値を求めよ.
(2)$u,\ v$を実数とする.$2$次方程式$t^2-ut+v=0$が実数解をもつとき,点$(u,\ v)$の存在範囲を図示せよ.
(3)平面上の点$(a,\ b)$が原点を中心とする半径$1$の円の内部を動くとき,点$(a+b,\ ab)$の動いてできる領域を図示せよ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。