タグ「中心」の検索結果

21ページ目:全588問中201問~210問を表示)
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
自治医科大学 私立 自治医科大学 2014年 第12問
辺$\mathrm{AB}$の長さが$3$,辺$\mathrm{AC}$の長さが$2$,$\angle \mathrm{BAC}=60^\circ$である$\triangle \mathrm{ABC}$について考える.$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とする.$\triangle \mathrm{ABC}$の面積を$S_1$,$\triangle \mathrm{OAB}$の面積を$S_2$としたとき,$\displaystyle \frac{S_1}{S_2}$の値を求めよ.
産業医科大学 私立 産業医科大学 2014年 第3問
一辺の長さが$1$の正二十面体の$1$つの面を$\triangle \mathrm{ABC}$とする.さらに外接球の中心を$\mathrm{O}$とする.すなわち,この正二十面体の$12$個の頂点は中心を$\mathrm{O}$とする$1$つの球の上にある.次の問いに答えなさい.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{O}$を通る平面でこの正二十面体を切ったとき,切り口として得られる六角形の面積を求めなさい.
(2)$\mathrm{O}$から$\triangle \mathrm{ABC}$に下ろした垂線の足を$\mathrm{D}$とするとき,線分$\mathrm{OD}$の長さを求めなさい.
福岡大学 私立 福岡大学 2014年 第2問
$a>0$とする.点$\mathrm{A}(a,\ a)$と直線$y=3x$との距離を$a$を用いて表すと$[ ]$である.また,点$\mathrm{A}$を中心とし原点$\mathrm{O}$を通る円と直線$y=3x$との原点以外の交点を$\mathrm{P}$とするとき,$\mathrm{OP}=\sqrt{5}$ならば,$a=[ ]$である.
金沢工業大学 私立 金沢工業大学 2014年 第6問
原点を$\mathrm{O}$とする座標平面上に点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ -1)$をとる.点$\displaystyle \left( \frac{1}{2},\ 0 \right)$を中心とする半径$\displaystyle \frac{1}{2}$の円$C$を考える.$C$上の点で,第$1$象限にある点を$\mathrm{P}$とし,$\angle \mathrm{POA}=\theta$とする.

(1)$\displaystyle \angle \mathrm{OPA}=\frac{\pi}{[ケ]}$であり,$\displaystyle \triangle \mathrm{POA}=\frac{1}{[コ]} \sin \theta \cos \theta$である.
(2)四辺形$\mathrm{OBAP}$の面積は$\displaystyle \frac{1}{[サ]}+\frac{1}{[シ]} \sin 2\theta$である.
(3)$\displaystyle \triangle \mathrm{POB}=\frac{1}{[ス]}+\frac{1}{[セ]} \cos 2\theta$である.
(4)$\triangle \mathrm{PBA}$の面積を$S$とすると,$\displaystyle S=\frac{1}{[ソ]}+\frac{\sqrt{[タ]}}{[チ]} \sin \left( 2\theta-\frac{\pi}{[ツ]} \right)$であり,$S$は$\displaystyle \theta=\frac{[テ]}{[ト]} \pi$で最大値$\displaystyle \frac{1+\sqrt{[ナ]}}{[ニ]}$をとる.
金沢工業大学 私立 金沢工業大学 2014年 第3問
図のように,点$\mathrm{O}$を中心とし,線分$\mathrm{AB}$を直径とする半径$1$の半円において,円周上に点$\mathrm{P}$をとり,$\angle \mathrm{POA}=\theta$とし,点$\mathrm{P}$における接線が線分$\mathrm{OA}$の延長と交わる点を$\mathrm{H}$とする.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.さらに,線分$\mathrm{OA}$上に$\angle \mathrm{OPB}=\angle \mathrm{OPD}$となるように点$\mathrm{D}$をとる.
(図は省略)

(1)$\displaystyle \mathrm{AP}=[ア] \sin \frac{\theta}{[イ]}$である.
(2)$\displaystyle \lim_{\theta \to +0} \frac{\mathrm{AP}}{\theta}=[ウ]$である.
(3)$\displaystyle \lim_{\theta \to +0} \frac{\mathrm{AH}}{\theta^2}=\frac{[エ]}{[オ]}$である.
(4)$\displaystyle \lim_{\theta \to +0} \mathrm{OD}=\frac{[カ]}{[キ]}$である.
金沢工業大学 私立 金沢工業大学 2014年 第5問
原点を$\mathrm{O}$とする座標平面において,次の極方程式で表される$2$つの曲線を考える.
\[ r=f(\theta)=3 \cos \theta,\quad r=g(\theta)=1+\cos \theta \]
ただし,$0 \leqq \theta<2\pi$とする.また,極座標が$(f(\theta),\ \theta)$,$(g(\theta),\ \theta)$である点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.

(1)点$\mathrm{P}$は,中心が直交座標で$\displaystyle \left( \frac{[ア]}{[イ]},\ [ウ] \right)$であり,半径が$\displaystyle \frac{[エ]}{[オ]}$である円の周上を動く.
(2)点$\mathrm{P}(f(\theta),\ \theta)$と点$\mathrm{Q}(g(\theta),\ \theta)$の間の距離は$\displaystyle \theta=\frac{\pi}{[カ]}$および$\displaystyle \frac{[キ]}{[ク]}\pi$のとき最小値$[ケ]$をとり,$\theta=[コ]$のとき最大値$[サ]$をとる.
(3)線分$\mathrm{PQ}$の中点が原点$\mathrm{O}$となるとき,点$\mathrm{P}$の直交座標は$\displaystyle \left( \frac{[シ]}{[スセ]},\ \pm \frac{[ソ] \sqrt{[タチ]}}{[ツテ]} \right)$である.
名城大学 私立 名城大学 2014年 第1問
次の$[ ]$に答えを記入せよ.

(1)$2$個のさいころを振って,出た目の逆数の和が整数になる確率は$[ア]$である.また,$3$個のさいころを振って,出た目の逆数の和が$1$になる確率は$[イ]$である.
(2)座標平面で直線$y=3x$についての対称移動を$f$,原点を中心とした${60}^\circ$の回転移動を$g$とする.点$\mathrm{P}(2,\ -1)$の$f$による像を点$\mathrm{Q}$とし,点$\mathrm{Q}$の$g$による像を点$\mathrm{R}$とするとき,点$\mathrm{Q}$の$x$座標は$[ウ]$,点$\mathrm{R}$の$x$座標は$[エ]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第4問
原点$\mathrm{O}$を中心とした半径$1$の円$C$がある.円$C$上の$1$点$\mathrm{A}(a_1,\ a_2)$,$a_i>0$,$i=1,\ 2$を考える.$\mathrm{OA}$が$x$軸となす角度を$\theta$とする.

(1)円$C^\prime$を中心$(b_1,\ b_2)$,$b_i>0$,$i=1,\ 2$,半径$1$の円とし,点$\mathrm{A}$と$(1,\ 0)$で円$C$と交わっているものとすると,$(b_1,\ b_2)=[$14$]$である.また円$C^\prime$の点$\mathrm{A}$における接線の方程式は$[$15$]$である.
(2)次に$\theta$を限りなく$0$に近づけていくとき,
\[ \theta,\ \sin \theta,\ \sqrt{2(1-\cos \theta)},\ 1-\cos \theta+\sin \theta \]
の値の大小関係が定まり,これらを小さい順に並べて,$a<b<c<d$とすると
\[ a=[$16$],\ b=[$17$],\ c=[$18$],\ d=[$19$] \]
であり,$\displaystyle \frac{d-a}{bc}$は$[$20$]$に近づく.
早稲田大学 私立 早稲田大学 2014年 第3問
直線$4x+3y=48$,$3x-4y=0$と$y$軸のつくる三角形に内接する円の中心の座標は$\displaystyle \left( \frac{[キ]}{[ク]},\ \frac{[ケ]}{[コ]} \right)$である.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。