タグ「中心」の検索結果

18ページ目:全588問中171問~180問を表示)
愛知教育大学 国立 愛知教育大学 2014年 第7問
$\displaystyle 0<t<\frac{\pi}{2}$とする.座標平面上に,原点$\mathrm{O}$を中心とする単位円$C$上の点$\mathrm{P}(\cos t,\ \sin t)$と,$x$軸上の点$\mathrm{Q}(\cos t,\ 0)$をとり,点$\mathrm{P}$における$C$の接線を$\ell$とする.また,点$\mathrm{Q}$から$\ell$に下ろした垂線と$\ell$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\mathrm{PR}$と$\mathrm{QR}$を$t$を用いて表せ.
(3)$(2)$で求めた$\mathrm{PR}$を$x(t)$,$\mathrm{QR}$を$y(t)$とする.点$\mathrm{S}(x(t),\ y(t))$の軌跡を求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第5問
次の各問いに答えよ.

(1)座標平面上での原点を中心とする${150}^\circ$の回転移動を表す行列を$P$とする.点$(x,\ y)$が$P$の表す移動によって,点$(2,\ 4)$に移ったとする.このとき,点$(x,\ y)$を求めよ.
(2)$(1)$で与えられた行列$P$を考える.$P^n=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$を満たす最小の自然数$n$を求めよ.
(3)以下の各命題の反例をあげよ.また,反例になっていることを示せ.ただし,$X,\ Y$は$2$次の正方行列とする.

(i) $XY=YX$が成立する.
(ii) $XY=O$ならば,$X=O$または$Y=O$である.ただし,$O$は$2$次の零行列を表す.
(iii) $A$を逆行列$A^{-1}$をもつ$2$次の正方行列とする.このとき,$AX=Y$ならば,$X=YA^{-1}$である.
奈良女子大学 国立 奈良女子大学 2014年 第2問
$r$を$0<r<2$をみたす実数とする.座標平面上の$4$点$\mathrm{A}(2-r,\ 2-r)$,$\mathrm{B}(-2+r,\ 2-r)$,$\mathrm{C}(-2+r,\ -2+r)$,$\mathrm{D}(2-r,\ -2+r)$を頂点とする正方形を考える.この正方形$\mathrm{ABCD}$の周上を動く点を$\mathrm{P}$とし,$\mathrm{P}$を中心とする半径$r$の円を$\mathrm{O}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$が線分$\mathrm{AB}$上を$\mathrm{A}$から$\mathrm{B}$まで動くとき,円$\mathrm{O}$の周および内部が通過してできる図形の面積を求めよ.
(2)点$\mathrm{P}$が正方形$\mathrm{ABCD}$の周上を一周するとき,円$\mathrm{O}$の周および内部が通過してできる図形の面積$S$を求めよ.
(3)$(2)$で求めた$S$を最大にする$r$の値を求めよ.
大阪教育大学 国立 大阪教育大学 2014年 第3問
曲線$\displaystyle y=\frac{x^2}{x^2+3}$を$C$とし,座標平面上の原点を$\mathrm{O}$とする.以下の問に答えよ.

(1)曲線$C$の凹凸,変曲点,漸近線を調べ,その概形をかけ.
(2)曲線$C$の接線で原点を通るものをすべて求めよ.また,その接点を求めよ.
(3)$\mathrm{P}$を原点を中心とする半径$\displaystyle \frac{\sqrt{17}}{4}$の円周上の点とする.点$\mathrm{P}$を点$\displaystyle \mathrm{A} \left( 0,\ \frac{\sqrt{17}}{4} \right)$から時計回りに動かすとき,原点以外に線分$\mathrm{OP}$が初めて曲線$C$と共有点をもつとき,その座標を求めよ.
(4)$\mathrm{Q}$を原点を中心とする半径$2$の円周上の点とする.点$\mathrm{Q}$を点$\mathrm{B}(0,\ 2)$から時計回りに動かすとき,原点以外に線分$\mathrm{OQ}$が初めて曲線$C$と共有点をもつとき,その座標を求めよ.
富山大学 国立 富山大学 2014年 第2問
点$\mathrm{P}_0$を$xy$平面の原点とし,点$\mathrm{P}_1$の座標を$(1,\ 0)$とする.点$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\cdots$を次のように定める.$n=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_{n-1}$を中心として点$\mathrm{P}_n$を反時計回りに$\theta (0<\theta<\pi)$だけ回転させた点を$\mathrm{Q}_n$とし,点$\mathrm{P}_{n+1}$を$\overrightarrow{\mathrm{P}_{n-1} \mathrm{Q}_n}=\overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}$となるようにとる.このとき,次の問いに答えよ.

(1)$k=0,\ 1,\ 2,\ \cdots$に対して,

$\displaystyle \sin \frac{\theta}{2} \cos k \theta=\frac{1}{2} \left\{ -\sin \left( \frac{2k-1}{2} \theta \right)+\sin \left( \frac{2k+1}{2} \theta \right) \right\}$

$\displaystyle \sin \frac{\theta}{2} \sin k \theta=\frac{1}{2} \left\{ \cos \left( \frac{2k-1}{2} \theta \right)-\cos \left( \frac{2k+1}{2} \theta \right) \right\}$

が成り立つことを示せ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して,

$\displaystyle 1+\cos \theta+\cdots +\cos n\theta=\frac{1}{2 \sin \displaystyle\frac{\theta}{2}} \left\{ \sin \left( \displaystyle\frac{2n+1}{2} \theta \right)+\sin \frac{\theta}{2} \right\}$

$\displaystyle \sin \theta+\cdots +\sin n\theta=\frac{1}{2 \sin \displaystyle\frac{\theta}{2}} \left\{ -\cos \left( \displaystyle\frac{2n+1}{2} \theta \right)+\cos \frac{\theta}{2} \right\}$

が成り立つことを示せ.
(3)点$\mathrm{P}_n$の座標を$(x_n,\ y_n)$とおくとき,$x_n$および$y_n$を求めよ.
(4)すべての点$\mathrm{P}_n (n=0,\ 1,\ 2,\ \cdots)$を通る円の方程式を求めよ.
大分大学 国立 大分大学 2014年 第2問
原点$\mathrm{O}$を中心とする半径$2 \sqrt{2}$の球面$S$上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=4,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=5,\quad \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=6 \]
をみたしている.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{OG}$と球面$S$の交点のうち$\mathrm{G}$から遠い方を$\mathrm{P}$とする.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OG}}|$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表しなさい.
(3)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OP}}$のなす角を求めなさい.
大分大学 国立 大分大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$2 \sqrt{2}$の球面$S$上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=4,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=5,\quad \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=6 \]
をみたしている.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{OG}$と球面$S$の交点のうち$\mathrm{G}$から遠い方を$\mathrm{P}$とする.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OG}}|$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表しなさい.
(3)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OP}}$のなす角を求めなさい.
大分大学 国立 大分大学 2014年 第2問
原点$\mathrm{O}$を中心とする半径$2 \sqrt{2}$の球面$S$上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=4,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=5,\quad \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=6 \]
をみたしている.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{OG}$と球面$S$の交点のうち$\mathrm{G}$から遠い方を$\mathrm{P}$とする.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OG}}|$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表しなさい.
(3)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OP}}$のなす角を求めなさい.
香川大学 国立 香川大学 2014年 第3問
自然数$n$に対して,座標平面上の点$\mathrm{P}_n$を次のように帰納的に定める.点$\mathrm{P}_1$の座標を$(1,\ 1)$とし,原点$\mathrm{O}$を中心として線分$\mathrm{OP}_n$を反時計回りに${90}^\circ$回転させてできる線分を$\mathrm{OQ}_n$とし,線分$\mathrm{OQ}_n$の中点を$\mathrm{P}_{n+1}$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$の座標を求めよ.
(2)$k$を自然数とするとき,点$\mathrm{P}_{4k+1}$の座標を$k$を用いて表せ.
(3)点$\mathrm{X}_n$を
\[ \overrightarrow{\mathrm{OX}}_n=\overrightarrow{\mathrm{OP}}_1+\overrightarrow{\mathrm{OP}}_2+\cdots +\overrightarrow{\mathrm{OP}}_n \]
となるように定める.このとき,点$\mathrm{X}_2$,$\mathrm{X}_3$,$\mathrm{X}_4$,$\mathrm{X}_5$の座標を求めよ.また,線分$\mathrm{OX}_1$,$\mathrm{X}_1 \mathrm{X}_2$,$\mathrm{X}_2 \mathrm{X}_3$,$\mathrm{X}_3 \mathrm{X}_4$,$\mathrm{X}_4 \mathrm{X}_5$を座標平面上に図示せよ.
(4)$k$を自然数とするとき,点$\mathrm{X}_{4k}$の座標を$k$を用いて表せ.
香川大学 国立 香川大学 2014年 第3問
自然数$n$に対して,座標平面上の点$\mathrm{P}_n$を次のように帰納的に定める.点$\mathrm{P}_1$の座標を$(1,\ 1)$とし,原点$\mathrm{O}$を中心として線分$\mathrm{OP}_n$を反時計回りに${90}^\circ$回転させてできる線分を$\mathrm{OQ}_n$とし,線分$\mathrm{OQ}_n$の中点を$\mathrm{P}_{n+1}$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$の座標を求めよ.
(2)$k$を自然数とするとき,点$\mathrm{P}_{4k+1}$の座標を$k$を用いて表せ.
(3)点$\mathrm{X}_n$を
\[ \overrightarrow{\mathrm{OX}}_n=\overrightarrow{\mathrm{OP}}_1+\overrightarrow{\mathrm{OP}}_2+\cdots +\overrightarrow{\mathrm{OP}}_n \]
となるように定める.このとき,点$\mathrm{X}_2$,$\mathrm{X}_3$,$\mathrm{X}_4$,$\mathrm{X}_5$の座標を求めよ.また,線分$\mathrm{OX}_1$,$\mathrm{X}_1 \mathrm{X}_2$,$\mathrm{X}_2 \mathrm{X}_3$,$\mathrm{X}_3 \mathrm{X}_4$,$\mathrm{X}_4 \mathrm{X}_5$を座標平面上に図示せよ.
(4)$k$を自然数とするとき,点$\mathrm{X}_{4k}$の座標を$k$を用いて表せ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。