タグ「中心」の検索結果

15ページ目:全588問中141問~150問を表示)
九州産業大学 私立 九州産業大学 2015年 第2問
円$x^2+y^2-6x+ay+4=0$上の点$\mathrm{A}(5,\ 1)$における接線を$\ell$とする.原点$\mathrm{O}$からこの円に引いた$2$本の接線のうち,傾きが正であるものの方程式を$y=mx$,接点を$\mathrm{B}$とする.また,この円の中心を$\mathrm{C}$とする.

(1)$a=[ア]$である.
(2)$\mathrm{C}$の座標は$([イ],\ [ウ])$である.
(3)接線$\ell$の傾きは$[エオ]$である.
(4)$\triangle \mathrm{OBC}$の面積は$\sqrt{[カ]}$である.
(5)$\displaystyle m=\frac{\sqrt{[キ]}}{[ク]}$である.
西南学院大学 私立 西南学院大学 2015年 第4問
平面上に$2$つの円があり,それぞれの半径は$7$と$4$である.この$2$つの円の中心間の距離を$d$,共通接線の数を$n$とすると,$d$の値に応じて$n$の値が定まる.ただし,共通接線が存在しない場合は$n=0$とする.以下の問に答えよ.

(1)$d$が任意の値をとるとき,$n$の最大値は$[ヌ]$である.
(2)$d \leqq 11$のとき,$n$の最大値は$[ネ]$である.
(3)$d<[ノ]$のとき,$n=0$である.
近畿大学 私立 近畿大学 2015年 第1問
$a$は$0$でない定数とする.$2$つの円$C_1:x^2+y^2+4x-6y+9=0$,$C_2:x^2+y^2-4ax+2y+1=0$は異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっている.

(1)$a$の値に関係なく,$C_2$が通る定点の座標は$[ア]$である.
(2)$a$の値の範囲は$[イ]$である.
(3)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線の傾きが$-3$となるとき,$a=[ウ]$である.
(4)$C_1$の中心を$\mathrm{A}$とおく.$\triangle \mathrm{APQ}$が正三角形となるとき,$a=[エ]$である.
近畿大学 私立 近畿大学 2015年 第3問
座標平面において,中心が原点$\mathrm{O}$で点$\mathrm{P}(1,\ 0)$を通る円$C_1$と,中心が点$\mathrm{Q}(s,\ t)$で点$\mathrm{P}$を通る円$C_2$がある.ただし$t>0$とする.$C_1$と$C_2$の$\mathrm{P}$ではない交点を$\mathrm{R}$とし,$C_1$の境界を含む内部と$C_2$の境界を含む内部の共通部分を$D$とする.

(1)直線$\mathrm{PR}$の方程式は$s(x-[ア])+ty=0$である.$s=0$のとき,点$\mathrm{R}$は$t$の値によらず同じ位置にあって,その座標は$([イ][ウ],\ [エ])$である.

(2)$s=\sqrt{3} \, t$のとき,点$\mathrm{R}$は$s$と$t$の値によらず同じ位置にあって,その座標は$\displaystyle \left( \frac{[オ]}{[カ]},\ \frac{\sqrt{[キ]}}{[ク]} \right)$である.四角形$\mathrm{OPQR}$は円に内接するとする.このとき,点$\mathrm{Q}$の座標は$\displaystyle \left( [ケ],\ \frac{\sqrt{[コ]}}{[サ]} \right)$である.また,領域$D$の面積は$\displaystyle \frac{[シ]}{[ス][セ]} \pi-\frac{\sqrt{[ソ]}}{[タ]}$である.

(3)点$\mathrm{Q}$は$s+t=2$を満たしながら動くとする.線分$\mathrm{QR}$の長さが最小となるような点$\mathrm{R}$の座標は$\displaystyle \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$であり,このときの領域$D$の面積は$\displaystyle \frac{\pi}{4}-\frac{\alpha}{[ナ]}-\frac{[ニ]}{[ヌ]}$となる.ただし,$\displaystyle \sin \alpha=\frac{4}{5} \left( 0<\alpha<\frac{\pi}{2} \right)$である.
京都薬科大学 私立 京都薬科大学 2015年 第2問
次の$[ ]$にあてはまる数を記入せよ.

座標平面上に$4$点$\mathrm{A}(6,\ 6)$,$\mathrm{B}(-3,\ 3)$,$\mathrm{C}(2,\ -2)$,$\mathrm{D}(-6,\ -6)$がある.

(1)$\triangle \mathrm{ABC}$の外心の座標は$([ア],\ [イ])$であり,外接円の半径は$[ウ]$である.この円を$C$とする.
(2)円$C$上を動く点$\mathrm{P}$と点$\mathrm{D}$に対して,線分$\mathrm{DP}$を$1:2$に内分する点の軌跡は円になる.この円の中心の座標は$([エ],\ [オ])$であり,半径は$[カ]$である.
(3)点$\mathrm{A}$での円$C$の接線を$\ell_1$とする.接線$\ell_1$の方程式は$y=[キ]x+[ク]$であり,$\ell_1$と$x$軸との交点$\mathrm{E}$の座標は$([ケ],\ 0)$である.
(4)点$\mathrm{E}$を通り,円$C$に接する直線は$2$本ある.$\ell_1$と異なる接線を$\ell_2$とし,$\ell_2$は点$\mathrm{F}$で円$C$に接するとする.点$\mathrm{F}$の座標は$([コ],\ [サ])$であり,$\ell_2$の方程式は$y=[シ]x+[ス]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第1問
原点を中心とした半径$1$の円に内接する正三角形$T_1$がある.$T_1$の頂点の$1$つが$\mathrm{A}(0,\ 1)$であり,$T_1$の残りの頂点のうち,$x$座標が負の値である方を$\mathrm{B}$とする.また,$T_1$を原点に関して対称移動したものを$T_2$とする.

(1)直線$\mathrm{AB}$の方程式は,$[$1$]$である.
(2)直線$\mathrm{AB}$と$T_2$の辺との交点のうち,$x$座標の値が大きい方の座標は$(x,\ y)=[$2$]$である.
(3)$T_1$と$T_2$が重なる部分の面積は$[$3$]$である.
久留米大学 私立 久留米大学 2015年 第1問
原点を中心とする半径$5$の円周上に,$2$点$\mathrm{A}(0,\ -5)$,$\mathrm{B}(4,\ -3)$がある.

(1)円周上に,$\triangle \mathrm{ABC}$が直角三角形になるようにとった点$\mathrm{C}$の座標は$[$1$]$である.
(2)円周上に,$\triangle \mathrm{ABC}$が二等辺三角形になるようにとった点$\mathrm{C}$の座標は$[$2$]$である.
(3)円に内接し,線分$\mathrm{AB}$にも接する円のうち,直径が最大の円の方程式は$[$3$]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第4問
下図のように太陽が雲間から見えた.観察された太陽を半径$r$の円と仮定し,図のように見えた太陽の円周上の$2$点を$\mathrm{A}$,$\mathrm{B}$とし,線分$\mathrm{AB}$の中点を$\mathrm{C}$,円周上に一点$\mathrm{D}$を線分$\mathrm{CD}$と$\mathrm{AB}$が互いに直交するようにとる.$\mathrm{AB}=a$,$\mathrm{CD}=c$とおくとき,$r$と$a,\ c$の関係を式で表わすと$[$8$]$となる.このとき$r$の最小値を$c$を用いて表わすと,$[$9$]$である.また$c<r$の場合,観察された太陽の中心を$\mathrm{O}$とする.この円を$\mathrm{OD}$を通る直径を軸に回転させてできる球において$\mathrm{AB}$を通り$\mathrm{OD}$に垂直な平面で$2$つの図形に分けたとき,点$\mathrm{D}$を含む部分の体積を$a,\ c$を用いて表すと$[$10$]$である.
(図は省略)
首都大学東京 公立 首都大学東京 2015年 第2問
座標空間に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(0,\ 2,\ 2)$,$\mathrm{B}(3,\ -1,\ 2)$がある.三角形$\mathrm{OAB}$の周上または内部の点$\mathrm{P}$は$\mathrm{AP}=\sqrt{2}$,$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{AP}}$を満たしているとする.このとき,以下の問いに答えなさい.

(1)点$\mathrm{P}$の座標を求めなさい.
(2)三角形$\mathrm{OBP}$の面積を求めなさい.
(3)点$\mathrm{Q}$が点$\mathrm{A}$を中心とする半径$\sqrt{2}$の球面上を動くとき,点$\mathrm{B}$から直線$\mathrm{OQ}$に引いた垂線の長さの最小値を求めなさい.
首都大学東京 公立 首都大学東京 2015年 第1問
点$\mathrm{O}$を中心とする半径$1$の円に内接している正六角形$\mathrm{ABCDEF}$がある.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{O}$の$7$点から異なる$3$点を同時に選ぶとき,以下の問いに答えなさい.

(1)選んだ$3$点が一直線上に並ぶ確率を求めなさい.
(2)選んだ$3$点を結ぶと正三角形ができる確率を求めなさい.
(3)選んだ$3$点を結ぶと面積が$\displaystyle \frac{\sqrt{3}}{3}$より大きい三角形ができる確率を求めなさい.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。