タグ「中心」の検索結果

12ページ目:全588問中111問~120問を表示)
浜松医科大学 国立 浜松医科大学 2015年 第3問
$t$は実数で$\displaystyle 0<t<\frac{\pi}{2}$を満たすとする.平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 0)$,$\mathrm{P}(\cos t,\ \sin t)$,$\mathrm{Q}(1,\ \sin t)$をとる.このとき以下の問いに答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線を$\ell$,点$\mathrm{O}$と点$\mathrm{Q}$を通る直線を$m$とする.このとき$\ell,\ m$の交点$\mathrm{R}$の座標を求めよ.
(2)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲全体を動くときに点$\mathrm{R}$が描く曲線を$C$とする.このとき,点$(x,\ y) (x>0,\ y>0)$が$C$上にあるための条件を$x,\ y$の式で表せ.
(3)曲線$C$の点$\mathrm{R}$における接線を$n$とする.ある$t$に対して直線$\ell,\ m$がなす鋭角と直線$m,\ n$がなす鋭角が等しくなる.この状況のもとで,以下の問いに答えよ.

(i) 点$\mathrm{P}(\cos t,\ \sin t)$の座標を求めよ.
(ii) 直線$\ell$と$n$のなす鋭角を$\theta$とおく.また,点$\mathrm{O}$を中心とし半径が$1$の円と直線$n$との$2$交点のうち,$y$座標が正の点を$\mathrm{S}(\cos \phi,\ \sin \phi)$とおく.このとき,$\theta=\phi$を示せ.
宇都宮大学 国立 宇都宮大学 2015年 第2問
$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とし,半径を$1$とする.辺$\mathrm{BC}$の中点を$\mathrm{P}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$(1)$における$\overrightarrow{\mathrm{PQ}}$は,$\overrightarrow{a}+\overrightarrow{b}$と平行で向きが同じとする.$|\overrightarrow{\mathrm{PQ}}|:|\overrightarrow{a}+\overrightarrow{b}|=s:1$とするとき,$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$を,それぞれ$\overrightarrow{a} \cdot \overrightarrow{b}$と$s$を用いて表せ.
(3)$(2)$において,さらに$\displaystyle s=\frac{1}{6}$であるとき,$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第2問
$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とし,半径を$1$とする.辺$\mathrm{BC}$の中点を$\mathrm{P}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$(1)$における$\overrightarrow{\mathrm{PQ}}$は,$\overrightarrow{a}+\overrightarrow{b}$と平行で向きが同じとする.$|\overrightarrow{\mathrm{PQ}}|:|\overrightarrow{a}+\overrightarrow{b}|=s:1$とするとき,$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$を,それぞれ$\overrightarrow{a} \cdot \overrightarrow{b}$と$s$を用いて表せ.
(3)$(2)$において,さらに$\displaystyle s=\frac{1}{6}$であるとき,$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第2問
$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とし,半径を$1$とする.辺$\mathrm{BC}$の中点を$\mathrm{P}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$(1)$における$\overrightarrow{\mathrm{PQ}}$は,$\overrightarrow{a}+\overrightarrow{b}$と平行で向きが同じとする.$|\overrightarrow{\mathrm{PQ}}|:|\overrightarrow{a}+\overrightarrow{b}|=s:1$とするとき,$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$を,それぞれ$\overrightarrow{a} \cdot \overrightarrow{b}$と$s$を用いて表せ.
(3)$(2)$において,さらに$\displaystyle s=\frac{1}{6}$であるとき,$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の$[ ]$にあてはまる最も適当な数または式などを解答欄に記入しなさい.

(1)$2$次方程式$x^2+kx+k+8=0$が異なる$2$つの実数解$\alpha$,$\beta$をもつとする.このとき,定数$k$の値の範囲は$k<[ア]$または$k>[イ]$である.さらに,このとき$\alpha^2+\beta^2=19$となるような定数$k$の値は$k=[ウ]$である.
(2)$xyz$空間の$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(-1,\ 0,\ 0)$,$\mathrm{C}(0,\ \sqrt{3},\ 0)$を$3$頂点とする三角形を底面にもち,$z \geqq 0$の部分にある正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{D}$の座標は$[エ]$である.また$4$頂点において正四面体$\mathrm{ABCD}$に外接する球の中心$\mathrm{E}$の座標は$[オ]$であり,$\overrightarrow{\mathrm{EA}}$と$\overrightarrow{\mathrm{EB}}$のなす角を$\theta ({0}^\circ \leqq \theta \leqq {180}^\circ)$とすると$\cos \theta=[カ]$である.
(3)$n$を自然数とする.白玉$5$個と赤玉$n$個が入っている袋から同時に玉を$2$個取り出すとき,取り出した玉の色が異なる確率を$p_n$とする.このとき$p_n=[キ]$である.また$\displaystyle p_n \leqq \frac{1}{5}$となる最小の自然数$n$は$n=[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
次の$[ ]$にあてはまる最も適当な数または式を解答欄に記入しなさい.

(1)多項式$f(x)=5x^3-12x^2+8x+1$を$x-1$で割ったときの商$g(x)$は$g(x)=[ケ]$であり,余りは$[コ]$である.また,$g(x)$を$x-1$で割ったときの余りは$[サ]$である.
さらに,定数$[コ]$,$[サ]$,$[シ]$,$[ス]$を用いると,$x$についての恒等式
\[ \frac{f(x)}{(x-1)^4}=\frac{[コ]}{(x-1)^4}+\frac{[サ]}{(x-1)^3}+\frac{[シ]}{(x-1)^2}+\frac{[ス]}{x-1} \]
が成り立つ.
(2)点$\mathrm{O}$を中心とする半径$1$の円周上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が
\[ 5 \overrightarrow{\mathrm{OA}}+6 \overrightarrow{\mathrm{OB}}=-7 \overrightarrow{\mathrm{OC}} \]
を満たすとする.このとき$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[セ]$であり,$|\overrightarrow{\mathrm{AB}}|=[ソ]$である.また$\angle \mathrm{ACB}$の大きさを$\theta ({0}^\circ \leqq \theta \leqq {180}^\circ)$とすると$\sin \theta=[タ]$である.
自治医科大学 私立 自治医科大学 2015年 第19問
円$C_1:x^2+y^2=a^2$($a$は正の実数)のとき,円$C_1$と$x$軸との交点を$\mathrm{A}(-a,\ 0)$,$\mathrm{B}(a,\ 0)$とする.円$C_2$は点$\mathrm{A}$を中心とする円であり,円$C_1$上の点$\mathrm{P}$($\mathrm{P}$の$y$座標は正の実数とする)で円$C_1$と交わることとする.線分$\mathrm{AB}$と円$C_2$の交点を$\mathrm{Q}$としたとき,線分$\mathrm{PQ}$の長さの最大値を$M$とする.$\displaystyle \frac{3 \sqrt{6}M}{2a}$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CD}=5$,$\mathrm{DA}=6$をみたす四角形$\mathrm{ABCD}$を考える.この四角形の面積を$F$とすると
\[ F=[$1$][$2$] \sin B+[$3$][$4$] \sin D \]
が成り立つ.余弦定理を用いれば
\[ F^2=[$5$][$6$][$7$]-[$8$][$9$][$10$] \cos (B+D) \]
を得る.$B+D=\pi$のとき,$F$は最大値
\[ 6 \sqrt{[$11$][$12$]} \]
をとる.
(2)辺の長さが$2 \sqrt{3}$の正四面体$F$がある.$F$の内部に中心をもち,$F$のどの辺とも高々$1$点を共有する球を考える.これらの球の中で最大のものを$B$とすれば,$B$の体積は$[$13$] \sqrt{[$14$]}\pi$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
次の問いに答えよ.

(1)座標平面上の原点$\mathrm{O}(0,\ 0)$と点$\mathrm{A}(0,\ 2)$を通る$2$円
\[ C_1:(x+1)^2+(y-1)^2=2,\quad C_2:(x-2)^2+(y-1)^2=5 \]
が与えられている.原点$\mathrm{O}$を通る直線$L$と$C_1$,$C_2$との交点($\neq \mathrm{O}$)をそれぞれ$\mathrm{D}$,$\mathrm{E}$とする.$\mathrm{D} \neq \mathrm{E}$のとき,線分$\mathrm{DE}$の内点$\mathrm{P}$を$\mathrm{DP}:\mathrm{PE}=3:1$となるようにとる.$\mathrm{D}=\mathrm{E}$のとき,$\mathrm{P}=\mathrm{D}$とする.直線$L$を原点を中心に回転させると,点$\mathrm{P}$は
\[ \left( \frac{[$13$][$14$]}{[$15$][$16$]},\ [$17$][$18$] \right) \]
を中心とする円周上にある.
(2)$\displaystyle \frac{\pi}{12}$における$\sin,\ \cos$の値は
\[ \begin{array}{l}
\displaystyle\sin \frac{\pi}{12}=\frac{\sqrt{[$19$][$20$]}-\sqrt{[$21$][$22$]}}{4} \\
\displaystyle\cos \frac{\pi}{12}=\frac{\sqrt{[$19$][$20$]}+\sqrt{[$21$][$22$]}}{4} \phantom{\displaystyle\frac{\frac{[ ]^2}{2}}{2}}
\end{array} \]
である.これを用いて,$0<x<\pi$の範囲で方程式
\[ \frac{\sqrt{3}+1}{\cos x}-\frac{\sqrt{3}-1}{\sin x}-4 \sqrt{2}=0 \]
を解けば
\[ x=\frac{[$23$][$24$]}{[$25$][$26$]}\pi \]
を得る.
立教大学 私立 立教大学 2015年 第3問
座標平面上の$2$点$\mathrm{P}$,$\mathrm{Q}$を$\mathrm{P}(-1,\ 2)$,$\mathrm{Q}(1,\ 2)$とする.点$\mathrm{A}$が点$(1,\ 0)$から出発し,点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円周$C$上を次のルールで動くとする.

【ルール】
\begin{itemize}
$1$個のさいころを$1$回投げて$1$回の試行とする.
$a$の目が出たら,反時計回りに$a \times {30}^\circ$回転する.
\end{itemize}

このとき,次の問に答えよ.

(1)三角形$\mathrm{PQA}$の面積が$\displaystyle \frac{3}{2}$となるような$\mathrm{A}$の座標をすべて求めよ.
(2)三角形$\mathrm{PQA}$が直角三角形となるような$\mathrm{A}$の座標をすべて求めよ.
(3)$2$回の試行を行う.$2$回の試行の後,三角形$\mathrm{PQA}$が直角三角形となる確率を求めよ.
(4)$3$回の試行を行う.$3$回の試行の後,三角形$\mathrm{PQA}$の面積が$\displaystyle \frac{3}{2}$となる確率を求めよ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。