タグ「中心」の検索結果

10ページ目:全588問中91問~100問を表示)
新潟大学 国立 新潟大学 2015年 第3問
座標平面上の原点$\mathrm{O}$を中心とする半径$1$の円周$C$上の点を$\mathrm{A}(a,\ b)$とし,$f(x)=(x-a)^2+b$とする.点$\mathrm{B}(0,\ -2)$から放物線$y=f(x)$に引いた接線を$\ell_1$,$\ell_2$とし,接点をそれぞれ$\mathrm{P}(p,\ f(p))$,$\mathrm{Q}(q,\ f(q))$とする.ただし$p<q$である.放物線$y=f(x)$と$2$直線$\ell_1$,$\ell_2$とで囲まれた部分の面積を$S$とする.次の問いに答えよ.

(1)接線$\ell_1$の方程式と接点$\mathrm{P}$の座標,および接線$\ell_2$の方程式と接点$\mathrm{Q}$の座標を$a,\ b$を用いて表せ.
(2)面積$S$を$b$を用いて表せ.
(3)点$\mathrm{A}$が円周$C$上を動くとき,面積$S$の最大値とそのときの点$\mathrm{A}$の座標$(a,\ b)$を求めよ.
佐賀大学 国立 佐賀大学 2015年 第2問
点$\mathrm{O}$を原点とし,$x$軸,$y$軸,$z$軸を座標軸とする座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(1,\ 0,\ 1)$がある.点$\mathrm{A}$を中心とする$xy$平面上の半径$1$の円周上に点$\mathrm{P}$をとり,図のように$\theta=\angle \mathrm{BAP}$とおく.ただし,$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$とする.また,直線$\mathrm{CP}$と$yz$平面の交点を$\mathrm{Q}$とおく.このとき,次の問に答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)$\theta$の値が$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$の範囲で変化するとき,$yz$平面における点$\mathrm{Q}$の軌跡の方程式を求め,その概形を図示せよ.
徳島大学 国立 徳島大学 2015年 第1問
直交座標の原点$\mathrm{O}$を極とし,$x$軸の正の部分を始線とする極座標$(r,\ \theta)$を考える.この極座標で表された$3$点を$\displaystyle \mathrm{A} \left( 1,\ \frac{\pi}{3} \right)$,$\displaystyle \mathrm{B} \left( 2,\ \frac{2 \pi}{3} \right)$,$\displaystyle \mathrm{C} \left( 3,\ \frac{4 \pi}{3} \right)$とする.

(1)点$\mathrm{A}$の直交座標を求めよ.
(2)$\angle \mathrm{OAB}$を求めよ.
(3)$\triangle \mathrm{OBC}$の面積を求めよ.
(4)$\triangle \mathrm{ABC}$の外接円の中心と半径を求めよ.ただし,中心は直交座標で表せ.
佐賀大学 国立 佐賀大学 2015年 第3問
点$\mathrm{O}$を原点とし,$x$軸,$y$軸,$z$軸を座標軸とする座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(1,\ 0,\ 1)$がある.点$\mathrm{A}$を中心とする$xy$平面上の半径$1$の円周上に点$\mathrm{P}$をとり,図のように$\theta=\angle \mathrm{BAP}$とおく.ただし,$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$とする.また,直線$\mathrm{CP}$と$yz$平面の交点を$\mathrm{Q}$とおく.このとき,次の問に答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)$\theta$の値が$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$の範囲で変化するとき,$yz$平面における点$\mathrm{Q}$の軌跡の方程式を求め,その概形を図示せよ.
小樽商科大学 国立 小樽商科大学 2015年 第3問
次の$[ ]$の中を適当に補え.

(1)整数$m \geqq 2015$に対し,
\[ \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+\cdots +\frac{1}{{(2m)}^2-1}=[ア] \]
(2)下図のような道に沿って$\mathrm{A}$地点から$\mathrm{B}$地点まで進むとき,最短経路は何通りあるかを求めると$[イ]$通り.
(図は省略)
(3)中心が$\mathrm{A}(1,\ 0)$にある半径$r (0<r<1)$の円に原点$\mathrm{O}$から$2$本の接線を引く.それぞれの接点と中心$\mathrm{A}$と原点$\mathrm{O}$を頂点とする四角形の面積の最大値$M$とそのときの$r$の値を求めると$(M,\ r)=[ウ]$.
弘前大学 国立 弘前大学 2015年 第3問
側面の展開図が,半径$10$,中心角$x$の扇形である円錐を作る.この円錐の体積の最大値と,そのときの$x$の値を求めよ.ただし,$0^\circ<x<{360}^\circ$とする.
福岡教育大学 国立 福岡教育大学 2015年 第3問
$\triangle \mathrm{ABC}$を$1$辺の長さが$1$の正三角形とし,$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とする.次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$の大きさを求めよ.
(2)点$\mathrm{P}$が$\triangle \mathrm{ABC}$の外接円上を動くとき,次の(ア),(イ)に答えよ.

\mon[(ア)] 内積の和$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PB}} \cdot \overrightarrow{\mathrm{PC}}+\overrightarrow{\mathrm{PC}} \cdot \overrightarrow{\mathrm{PA}}$の値を求めよ.
\mon[(イ)] 内積 $\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}$の最大値と最小値を求めよ.
福井大学 国立 福井大学 2015年 第4問
座標平面上に,$2$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$と,原点を中心とする半径$2$の円周上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$をとるとき,以下の問いに答えよ.

(1)$\mathrm{P}$を通って,直線$\mathrm{AP}$に直交する直線$\ell$の方程式を求めよ.
(2)$\ell$に関して$\mathrm{A}$と対称な点を$\mathrm{C}$とし,$\ell$と直線$\mathrm{BC}$の交点を$\mathrm{Q}$とおく.線分$\mathrm{BQ}$の長さを$\theta$を用いて表せ.
(3)$\theta$が$0 \leqq \theta<2\pi$の範囲を動くときの点$\mathrm{Q}$の軌跡は楕円であることを示し,その長軸と短軸の長さの比を求めよ.
山梨大学 国立 山梨大学 2015年 第1問
次の問いに答えよ.

(1)$\log_{10}2=0.3010$とする.$2^{2015}$の桁数を求めよ.
(2)座標空間において,点$(a,\ 0,\ -1)$を中心とする半径$3$の球面が,$yz$平面と交わってできる円の半径が$2$のとき,$a$の値を求めよ.
(3)$y=-3x^3+9x-1$の極小値を求めよ.
(4)$\displaystyle y=2 \sin \left( \theta+\frac{\pi}{3} \right)$のグラフをかけ.ただし,$0 \leqq \theta \leqq 2\pi$とする.
信州大学 国立 信州大学 2015年 第1問
原点を中心とする半径$1$の円$\mathrm{O}$の上に,$3$点$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( -\frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$,$\displaystyle \mathrm{C} \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$をとる.線分$\mathrm{AC}$の中点を$\mathrm{M}$,線分$\mathrm{BC}$の中点を$\mathrm{N}$とする.$2$点$\mathrm{M}$,$\mathrm{N}$を通る直線が円$\mathrm{O}$と交わる$2$点のうち,$\mathrm{N}$に近い方の交点を$\mathrm{Q}$とする.このとき,線分$\mathrm{NQ}$の長さを求めよ.
スポンサーリンク

「中心」とは・・・

 まだこのタグの説明は執筆されていません。