タグ「中小」の検索結果

1ページ目:全10問中1問~10問を表示)
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[シ]$に当てはまる数または式を記入せよ.

(1)$2$つの自然数$m,\ n$で等式$m^2-n^2=15$を満たすのは,
\[ (m,\ n)=([ア],\ [イ]) \quad \text{と} \quad (m,\ n)=([ウ],\ [エ]) \]
である.
(2)方程式$x^3-(3+a)x^2+(2+3a)x-2a=0$の異なる実数解が$2$個であるときの実数$a$の値をすべて挙げると$[オ]$である.
(3)$0 \leqq \theta \leqq \pi$の範囲で$4 \cos \theta-\sin \theta=1$が成り立つとき,$\tan \theta$の値は$[カ]$である.
(4)実数$x$に関する不等式$2^{2x}-2^{x+1}-48<0$を解くと$x<[キ]$である.
(5)$\sqrt{3},\ \sqrt[3]{5},\ \sqrt[4]{7},\ \sqrt[6]{19}$のうち,最小のものは$[ク]$である.
(6)大中小の$3$個のさいころを同時に$1$回投げるとき,出た目の和が$7$になる場合の数は$[ケ]$通りある.
(7)食品$\mathrm{X}$,$\mathrm{Y}$がある.食品$\mathrm{X}$は$100 \, \mathrm{g}$あたり$80$円で,栄養素$\mathrm{a}$を$4 \, \mathrm{mg}$,栄養素$\mathrm{b}$を$20 \, \mathrm{mg}$含む.食品$\mathrm{Y}$は$100 \, \mathrm{g}$あたり$60$円で,栄養素$\mathrm{a}$を$2 \, \mathrm{mg}$,栄養素$\mathrm{b}$を$60 \, \mathrm{mg}$含む.栄養素$\mathrm{a}$を$8 \, \mathrm{mg}$以上,栄養素$\mathrm{b}$を$80 \, \mathrm{mg}$以上になるように食品$\mathrm{X}$,$\mathrm{Y}$を混合するとき,費用を最小にするには食品$\mathrm{X}$を$[コ] \, \mathrm{g}$と食品$\mathrm{Y}$を$[サ] \, \mathrm{g}$混ぜればよい.

(8)$\displaystyle S=\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\cdots +\frac{1}{6 \cdot 7 \cdot 8}$とするとき,$S$の値は$[シ]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
次の問いに答えよ.

(1)図のように大中小の円と直線が互いに接している.小円の半径は$4$寸,中円の半径は$9$寸であった.このとき,大円の半径は$[$55$][$56$]$寸である.(注意:図は原寸どおりではない.)
(図は省略)
(2)\begin{mawarikomi}{50mm}{
(図は省略)
}
図のように半径$4$寸の扇形$\mathrm{AOB}$と半径$1$寸の扇形$\mathrm{COD}$が重なっている.今$\displaystyle \cos \angle \mathrm{AOB}=\frac{5}{8}$とすると,弧$\koa{$\mathrm{AB}$}$と直線$\mathrm{AD}$,$\mathrm{BC}$に接する円の半径は
\[ \frac{[$57$][$58$]}{[$59$][$60$]} \left( [$61$][$62$]-\sqrt{[$63$][$64$]} \right) \]
寸である.(注意:図は原寸どおりではない.)
\end{mawarikomi}
釧路公立大学 公立 釧路公立大学 2016年 第4問
次の問いに答えよ.

(1)大中小$3$つのさいころを投げるとき,出る$3$つの目の積が偶数となる場合は何通りあるか.
(2)$1$から$25$までの整数が$1$つずつ書かれた$25$枚のカードがある.以下の問いに答えよ.

(i) $2$枚のカードをもとに戻さず順に取り出すとき,$2$枚目が$5$の倍数になる確率を求めよ.
(ii) $2$枚のカードを同時に取り出すとき,取り出した$2$枚のカードの整数の和が$5$の倍数になる確率を求めよ.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$にあてはまる数または式を記入せよ.

(1)空間内の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 0,\ 1)$,$\mathrm{C}(2,\ 2,\ 0)$とする.実数$p,\ q$を用いて点$\mathrm{H}$を$\overrightarrow{\mathrm{AH}}=p \overrightarrow{\mathrm{AB}}+q \overrightarrow{\mathrm{AC}}$で定める.原点を$\mathrm{O}(0,\ 0,\ 0)$として,$\overrightarrow{\mathrm{OH}}$が$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の両方に垂直であるとき,$p=[ア]$,$q=[イ]$である.
(2)不等式$x+3<5 |x-1|$を満たす実数$x$の範囲は,$x<[ウ]$または$x>[エ]$である.
(3)多項式$(x^5+1)^2$を$x^2+x+1$で割った余りを$Ax+B$とすると,定数$A$と$B$は$A=[オ]$,$B=[カ]$である.
(4)$0<a<1$のとき$\displaystyle \lim_{n \to \infty} \frac{1}{n} \log (a^{2n}+a^{3n})=[キ]$である.
(5)大中小の$3$つのサイコロをふって,出た目の和が$9$になる確率は$[ク]$である.
(6)$0 \leqq \theta \leqq \pi$のとき,$\displaystyle \int_0^{\frac{\pi}{2}} \cos (x-\theta) \, dx$の最大値は$[ケ]$であり,最小値は$[コ]$である.
学習院大学 私立 学習院大学 2014年 第1問
大中小$3$つのサイコロを同時に投げ,出た目をそれぞれ$a,\ b,\ c$とする.また,これらを並べてできる$3$桁の整数$abc$を$n$とする.たとえば,$a=2$,$b=5$,$c=1$なら$n=251$である.

(1)$n$が偶数である確率を求めよ.
(2)$n$を$3$で割った余りが$2$である確率を求めよ.
(3)$n \geqq 325$である確率を求めよ.
甲南大学 私立 甲南大学 2013年 第1問
以下の問いに答えよ.

(1)大中小$3$個のサイコロを同時に投げる.大中小それぞれのサイコロの目を$x,\ y,\ z$とするとき,$\displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$となる確率を求めよ.
(2)正の実数$x$に対して定義された関数$y=2(\log_5 5x)^2+\log_5 (5x)^2+2 \log_5 x+2$の最小値と,そのときの$x$の値を求めよ.
甲南大学 私立 甲南大学 2013年 第1問
以下の問いに答えよ.

(1)大中小$3$個のサイコロを同時に投げる.大中小それぞれのサイコロの目を$x,\ y,\ z$とするとき,$\displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$となる確率を求めよ.
(2)正の実数$x$に対して定義された関数$y=2(\log_5 5x)^2+\log_5 (5x)^2+2 \log_5 x+2$の最小値と,そのときの$x$の値を求めよ.
学習院大学 私立 学習院大学 2013年 第1問
大中小$3$つのサイコロを同時に投げ,出た目をそれぞれ$a,\ b,\ c$とする.さらに,$a,\ b,\ c$のうちで,最小の数を$S$とし,最大の数を$T$とする.

(1)$S=2$となる確率を求めよ.
(2)$S \leqq 2$かつ$T=6$となる確率を求めよ.
(3)$S$の期待値を求めよ.
学習院大学 私立 学習院大学 2012年 第1問
大中小$3$つのサイコロを振って,出た目をそれぞれ$a,\ b,\ c$とする.$2$次方程式
\[ ax^2+bx+c=0 \]
が実数解をもつ確率を求めよ.
名古屋工業大学 国立 名古屋工業大学 2011年 第2問
大中小3枚のコインがある.サイコロを投げて次の規則でコインの表裏を反転させる試行を繰り返す.

\mon[(i)] 1または2の目が出たら,大コインを反転
\mon[(ii)] 3または4の目が出たら,中コインを反転
\mon[(iii)] 5または6の目が出たら,小コインを反転

3枚とも表になっている状態から始めるとき,次の問いに答えよ.

(1)サイコロを5回投げたとき,3枚とも裏である確率を求めよ.
(2)サイコロを5回投げたとき,初めて3枚とも裏になる確率を求めよ.
(3)コインが3枚とも裏になったところでサイコロ投げを終了することにする.最初の状態を除きコインが3枚とも表になることが一度もなく終了する確率を求めよ.
スポンサーリンク

「中小」とは・・・

 まだこのタグの説明は執筆されていません。