タグ「並べ方」の検索結果

4ページ目:全40問中31問~40問を表示)
中部大学 私立 中部大学 2012年 第1問
次の$[ア]$から$[ス]$にあてはまる数字または符号を記入せよ.

(1)$\displaystyle \frac{1}{1+\sqrt{2}+\sqrt{3}+\sqrt{6}}+\frac{1}{1-\sqrt{2}+\sqrt{3}-\sqrt{6}}=[ア]-\sqrt{[イ]}$

(2)赤玉$3$個,青玉$3$個,白玉$2$個がある.$1$列に並べる並べ方は$[ウ][エ][オ]$通りある.
(3)三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{6}$,$\mathrm{AC}=2$,$\angle \mathrm{A}=75^\circ$である.辺$\mathrm{BC}$上に$\angle \mathrm{BAD}=30^\circ$になるように点$\mathrm{D}$をとる.このとき,$\mathrm{BC}=\sqrt{[カ]}+[キ]$であり,$\mathrm{AD}=[ク] \sqrt{[ケ]}-\sqrt{[コ]}$である.
(4)$\displaystyle \int_1^x (x-t)f(t) \, dt=x^4-2x^2+1$を満たす関数は,$f(x)=[サ][シ]x^2-[ス]$である.
津田塾大学 私立 津田塾大学 2012年 第1問
次の各問に答えよ.

(1)多項式$f(x)$と$g(x)$の間に

$\displaystyle f(x)=2x+\int_0^1 g(t) \, dt$
$\displaystyle g(x)=\int_0^x f(t) \, dt+\int_0^1 f(t) \, dt$

という関係が成り立つとき,$f(x)$と$g(x)$を求めよ.
(2)関数$y=\log (x+\sqrt{x^2+1})$を微分せよ.
(3)$1$から$6$までの番号が$1$つずつ書かれた$6$枚のカードを横一列に並べる.$1$が書かれたカードと$2$が書かれたカードの間に他のカードが$1$枚ある並べ方は何通りあるか.
山口大学 国立 山口大学 2011年 第3問
1から6までの数字が1つずつ書かれた6枚のカードがある.6枚のカードの中から3枚を取り出し,左から一列に並べる.並べたカードの数字を左から順に百の位,十の位,一の位とする3桁の整数を$M$とし,また右から順に百の位,十の位,一の位とする3桁の整数を$N$とする.このとき,次の問いに答えなさい.

(1)$M+N$が3の倍数となるカードの並べ方の総数を求めなさい.
(2)$|M-N|<200$を満たすカードの並べ方の総数を求めなさい.
早稲田大学 私立 早稲田大学 2011年 第1問
次の$[ ]$にあてはまる数または数式を解答用紙の所定欄に記入せよ.

(1)平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が点$\mathrm{O}$を中心とする半径$1$の円周上にあり,
\[ 3 \overrightarrow{\mathrm{OA}}+7 \overrightarrow{\mathrm{OB}}+5 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
を満たしている.このとき線分$\mathrm{AB}$の長さは[ア]である.
(2)$xy$平面上の曲線$y=e^x$と$y$軸および直線$y=e$で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積は[イ]である.
(3)碁石を$n$個一列に並べる並べ方のうち,黒石が先頭で白石どうしは隣り合わないような並べ方の総数を$a_n$とする.ここで,$a_1=1$,$a_2=2$である.
(4)立方体の各辺の中点は全部で$12$個ある.頂点がすべてこれら$12$個の点のうちのどれかであるような正多角形は全部で[エ]個ある.
中部大学 私立 中部大学 2011年 第1問
次の$[ ]$にあてはまる数字または符号を記入せよ.

(1)$\displaystyle -2<\log_8 x<\frac{5}{3}$を満たす$x$は$\displaystyle \frac{[ ]}{[ ]}<x<[ ]$である.
(2)$x^3+ax^2+x+b=0$が$1$と$-2$を解にもつとき,もう$1$つの解は$[ ]$である.
(3)$7$個の数字$1,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4$を$1$列に並べる.このとき,偶数番目がすべて奇数になるような並べ方は$[ ]$通りある.
(4)$2$点$(2,\ 0,\ 1)$,$(1,\ 1,\ 2)$を通る直線がある.原点$\mathrm{O}$からこの直線に下ろした垂線の足を$\mathrm{A}$とする.点$\mathrm{A}$の座標は$\displaystyle \left( \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]} \right)$であり,原点から点$\mathrm{A}$までの距離は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$である.
首都大学東京 公立 首都大学東京 2011年 第3問
以下の問いに答えなさい.

(1)赤,白,黒の玉がそれぞれ$3$個ずつあり,一列に並べるものとする.合計$9$個の玉の並べ方は何通りあるか求めなさい.なお,同じ色の玉は区別しないものとする.
(2)(1)の並べ方のうちで,先頭の$3$個の玉が同じ色であるか,末尾の$3$個の玉が同じ色であるか,少なくとも一方が成り立つ並べ方は何通りあるか求めなさい.
(3)空間において座標$(x,\ y,\ z)$にある点$\mathrm{P}$を$1$回の操作で$(x+1,\ y,\ z)$,$(x,\ y+1,\ z)$,$(x,\ y,\ z+1)$のいずれかを選んでその座標に移動させる.最初に$(0,\ 0,\ 0)$にある点$\mathrm{P}$を,$9$回の操作で$(3,\ 3,\ 3)$に移動させる選び方のうち,$(3,\ 0,\ 0)$,$(0,\ 3,\ 0)$,$(0,\ 0,\ 3)$,$(3,\ 3,\ 0)$,$(3,\ 0,\ 3)$,$(0,\ 3,\ 3)$のいずれも経由しないものは何通りあるか求めなさい.
弘前大学 国立 弘前大学 2010年 第6問
$\mathrm{G},\ \mathrm{O},\ \mathrm{U},\ \mathrm{K},\ \mathrm{A},\ \mathrm{K},\ \mathrm{U}$の$7$文字を$1$列に並べるとき,同じ文字が隣り合わないような並べ方は何通りあるか.
島根大学 国立 島根大学 2010年 第2問
$a,\ a,\ b,\ b,\ c,\ d,\ e$の7個の文字すべてを1列に並べるとき,次の問いに答えよ.

(1)並べ方は全部で何通りあるか.
(2)2つの$a$が隣り合う並べ方は何通りあるか.
(3)2つの$a$が隣り合わず,かつ2つの$b$も隣り合わない並べ方は何通りあるか.
星薬科大学 私立 星薬科大学 2010年 第3問
$1$から$6$までの番号を$1$つずつ書いた$6$枚のカードがある.この$6$枚のカードを並べてできる$6$桁の自然数について次の問いに答えよ.

(1)番号$1$または番号$6$のカードがいずれも端になく,この$2$枚のカードが隣り合う並べ方は$[ ]$通りある.
(2)$6$桁の自然数を小さい順に並べたとき,$315$番目の$6$桁の自然数は$[ ]$である.
岐阜薬科大学 公立 岐阜薬科大学 2010年 第5問
赤玉$n$個,白玉$n$個,合計$2n$個($n \geqq 2$)の玉を無作為に左から$1$列に並べるとき,得点$X$を次のように定める.

(i) 赤玉が連続している部分が$m$ヶ所($m \geqq 1$)あり,そこに含まれる赤玉の総数が$l$であるとき,$X=l-m+1$とする.
(ii) 赤玉が連続している部分がないときは,$X=1$とする.

たとえば,$n=5$のとき,赤赤白赤赤白赤白白白ならば,$X=4-2+1=3$である.

(1)$n=6$のとき,並べ方は全部で何通りあるか求めよ.また,このとき$X=1$,$2$,$3$,$4$,$5$,$6$となる並べ方はそれぞれ何通りあるか求め,$X$の期待値$E(X)$を求めよ.
(2)$n=k (k \geqq 7)$のとき,$X=3,\ 4$となる並べ方の総数をそれぞれ$k$を用いて表せ.
スポンサーリンク

「並べ方」とは・・・

 まだこのタグの説明は執筆されていません。