タグ「両辺」の検索結果

1ページ目:全8問中1問~10問を表示)
長岡技術科学大学 国立 長岡技術科学大学 2016年 第3問
関数$f(x),\ g(x)$は
\[ \left\{ \begin{array}{l}
f(3x)+g(2x)=\sin 6x \quad \cdots\cdots (*) \\
f^\prime(3x)+g^\prime(2x)=\sin 6x \phantom{\frac{[ ]}{[ ]}} \\
f(0)=3
\end{array} \right. \]
を満たしている.下の問いに答えなさい.

(1)等式$(*)$の両辺を$x$で微分しなさい.
(2)$f^\prime(3x)$を求めなさい.
(3)$f(x),\ g(x)$を求めなさい.
大阪府立大学 公立 大阪府立大学 2014年 第3問
$a,\ b$を定数とし,$2$次の正方行列$A,\ X,\ Y$は
\[ A=aX+bY,\quad X+Y=E,\quad XY=O \]
をみたすとする.ここで,$E$と$O$はそれぞれ$2$次の単位行列と零行列を表す.このとき,$X+Y=E$の両辺に左から$X$を掛けると$X^2=X$が成り立つことがわかる.

(1)$Y^2=Y,\ YX=O$が成り立つことを示せ.
(2)$A$が$E$の定数倍ではないとき,$A-aE$と$A-bE$はともに逆行列をもたないことを示せ.
(3)$A=\left( \begin{array}{cc}
-1 & 2 \\
6 & 3
\end{array} \right)$のとき,$a,\ b (a<b)$および$X,\ Y$を求めよ.
信州大学 国立 信州大学 2013年 第2問
\begin{align}
& \nonumber
\end{align}

\begin{screen}
自然数$a_1,\ a_2$が,
\[ a_1 \leqq a_2,\quad a_1+a_2=a_1a_2 (1) \]
を満たすとき,$a_1,\ a_2$を次のように求めることができる. \\ \\
{\bf 解法} \\
(1)の2式の両辺を$a_1a_2$で割ると
\[ \frac{1}{a_2} \leqq \frac{1}{a_1},\quad \frac{1}{a_1}+\frac{1}{a_2}=1 \]
を得る.よって,この2つの式を組み合わせて
\[ 1=\frac{1}{a_1}+\frac{1}{a_2} \leqq \frac{1}{a_1}+\frac{1}{a_1}=\frac{2}{a_1} \]
を得る.これより$a_1 \leqq 2$である.$a_1=1$のとき,これを(1)の右の式に代入すると$1+a_2=a_2$となって矛盾する.$a_1=2$のとき,これを(1)の右の式に代入すると$a_2=2$となる.逆に$a_1=a_2=2$は(1)の2式を満たす.よって$a_1=a_2=2$となる.
\end{screen}
必要があれば上の解法を参考にして,自然数$a_1,\ a_2,\ a_3$が
\[ a_1 \leqq a_2 \leqq a_3,\quad a_1+a_2+a_3=a_1a_2a_3 \]
を満たすとき,$a_1,\ a_2,\ a_3$を求めよ.
杏林大学 私立 杏林大学 2013年 第4問
$[オ]$,$[タ]$,$[チ]$,$[ト]$,$[ナ]$の解答は対応する解答群の中から最も適当なものを$1$つ選べ.

条件$a_1=0$,$a_2=0$と漸化式
\[ a_{n+2}-3a_{n+1}+2a_n=2^n \log_2 \frac{(n+1)^2}{n} \cdots\cdots (*) \]
$(n=1,\ 2,\ 3,\ \cdots)$で定められる数列の一般項を,以下の要領で求めてみよう.

(1)漸化式$(*)$より,ベクトル$\overrightarrow{b_n}=\left( \begin{array}{c}
a_{n+1} \\
a_n
\end{array} \right)$に対して
\[ \overrightarrow{b_{n+1}}=A \overrightarrow{b_n}+\left( \begin{array}{c}
2^n \log_2 \displaystyle\frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
が成立する.ただし,行列$A$は$A=\left( \begin{array}{cc}
[ア] & [イウ] \\
[エ] & 0
\end{array} \right)$である.
この式の両辺に,$A$の逆行列$A^{-1}$を左から$n$回かけると
\[ (A^{-1})^n \overrightarrow{b_{n+1}}=(A^{-1})^{n-1} \overrightarrow{b_n}+(A^{-1})^n \left( \begin{array}{c}
\displaystyle 2^n \log_2 \frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
となり,$(A^{-1})^{n-1} \overrightarrow{b_n}$の階差数列がわかる.これより,$2$以上の整数$n$に対し,
\[ (A^{-1})^{n-1} \overrightarrow{b_{n}}=\overrightarrow{b_1}+\sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right) \cdots\cdots (**) \]
を得る.
(2)$(**)$式の右辺第一項は$\overrightarrow{b_1}=\left( \begin{array}{c}
[カ] \\
[キ]
\end{array} \right)$であり,$\displaystyle A^{-1}=\frac{1}{2} \left( \begin{array}{cc}
[ク] & [ケ] \\
[コサ] & [シ]
\end{array} \right)$は行列$P=\left( \begin{array}{cc}
2 & 1 \\
1 & 1
\end{array} \right)$を用いて
\[ A^{-1}=P \left( \begin{array}{cc}
\displaystyle\frac{[ス]}{[セ]} & 0 \\
0 & [ソ]
\end{array} \right) P^{-1} \]
と表されるので,$(**)$式右辺の和の項について,次式が成立する.
\[ \sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right)=P \left( \begin{array}{c}
\log_2 [タ] \\
-2^n \log_2 [チ]
\end{array} \right) \]
(3)$(2)$の結果と,行列$A$が同じ$P$を用いて
\[ A=P \left( \begin{array}{cc}
[ツ] & 0 \\
0 & [テ]
\end{array} \right) P^{-1} \]
と表わされることに注意すると,$(**)$式の両辺に行列$A$を左から$(n-1)$回かけて得られる$\overrightarrow{b_n}$から,一般項$a_n$は
\[ a_n=2^{[ト]} \log_2 [ナ] \]
($n=2,\ 3,\ 4,\ \cdots$)となる.

$[オ]$,$[ト]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan n+1 & \nagamarushi 1-n \\
\nagamarugo -n & \nagamaruroku -n-1 \phantom{AA} & \nagamarushichi \displaystyle\frac{n(n+1)}{2} \phantom{AA} & \nagamaruhachi n^2-1 \\
\nagamarukyu \displaystyle\frac{1}{6}n(n+1)(2n+1) & & &
\end{array} \]
$[タ]$,$[チ]$,$[ナ]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan \displaystyle\frac{n+1}{n} \phantom{AA} & \nagamarushi \displaystyle\frac{4n-6}{n} \\
\nagamarugo n^2-4n+5 & \nagamaruroku (n-1)! \phantom{AA} & \nagamarushichi n! \phantom{AA} & \nagamaruhachi n!-1 \\
\nagamarukyu (n-1) \times n! \phantom{AA} & \nagamarurei n \times n! & &
\end{array} \]
千葉工業大学 私立 千葉工業大学 2012年 第3問
次の各問に答えよ.

(1)$\displaystyle t=x-\frac{4}{x}$とおくと$\displaystyle t^2=x^2+\frac{[アイ]}{x^2}-[ウ]$である.$4$次方程式
\[ x^4-2x^3-16x^2+8x+16=0 \cdots\cdots (*) \]
の両辺に$\displaystyle \frac{1}{x^2}$をかけた方程式は,$\displaystyle t=x-\frac{4}{x}$を用いて,$t^2-[エ]t-[オ]=0$と表される.$4$次方程式$(*)$の解は$x=[カ] \pm [キ] \sqrt{[ク]}$,$[ケコ] \pm \sqrt{[サ]}$である.
(2)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$から異なる$3$個を並べて$3$桁の整数をつくる.このような整数は全部で$[シス]$個あり,このうち,偶数は$[セソ]$個,$9$の倍数は$[タ]$個ある.また,偶数でもなく$9$の倍数でもないものは$[チツ]$個ある.
岩手大学 国立 岩手大学 2011年 第3問
次の文章について,後の問いに答えよ.\\ \\
\quad 地球温暖化問題に関して,二酸化炭素の排出量の削減が叫ばれている.2008年に日本で開かれたサミットでは,42年後の2050年までに,年当たりの排出量を2008年のときと比較して50$\%$以上削減する,という目標が提言された.この目標を達成するために,前年比同率で削減することを考える.\\
\quad 2008年における排出量を$a \ (a>0)$とし,毎年,前年の$d \times 100 \% \ (0<d<1)$を減らすこととする.2008年の1年後の2009年の排出量の目標は[\bf ア]である.2008年から$n$年後の年間排出量を$a_n$とおくと,$a_n=[イ]$である.目標を達成するには$\displaystyle a_{42} \leqq \frac{a}{2}$,つまり,$d$を用いた式で表せば,
\[ [ウ] \leqq \frac{1}{2} \]
が成り立てばよい.両辺の逆数をとれば$\displaystyle \frac{1}{[ウ]} \geqq 2$となる.ところで,不等式
\[ (1+d)^{42} < \frac{1}{[ウ]} \ \, \cdots\cdots \maru{1} \]
が成り立つことがわかる.従って,
\[ (1+d)^{42} \geqq 2 \qquad\qquad \cdots\cdots \maru{2} \]
を満たす$d$を見つければ目標を達成することは明らかである.不等式\maru{2}の左辺は,二項定理により
\[ (1+d)^{42} =\sum_{r=0}^{42} [エ] \]
と表される.これを用いると,\underline{$d=0.02$は不等式\maru{2}を満たす}ことがわかる.つまり,毎年$2\%$の削減を2009年から行ったとすれば,42年後の2050年の排出量は2008年の$50\%$未満となることがわかった.

(1)文章中の[ア]~[エ]に当てはまる式を答えよ.
(2)$0<d<1$とするとき,不等式\maru{1}を証明せよ.
(3)下線部の命題を証明せよ.
(4)毎年$2\%$の削減を行った場合でも,42年間の排出量の合計は,削減率を0のまま2008年と同じ排出量を同じ期間続けたときの排出量の合計の$\displaystyle \frac{7}{12}$倍より大きくなることを証明せよ.
長崎大学 国立 長崎大学 2011年 第4問
次の問いに答えよ.

(1)関係式
\[ a_1=1,\quad na_{n+1}-(n+1)a_n=1 \quad (n=1,\ 2,\ \cdots) \]
によって定義される数列$\{a_n\}$の一般項を求めたい.$\displaystyle b_n=\frac{a_n}{n} \ (n=1,\ 2,\ \cdots)$とおいて数列$\{b_n\}$の一般項を求めることにより,$a_n$を求めよ.
(2)$x \neq 1$のとき,等比数列の和の公式
\[ \sum_{k=0}^{n-1}x^k=\frac{x^n-1}{x-1} \]
の両辺を$x$で微分せよ.その結果を利用して,$\displaystyle \sum_{k=1}^{n-1}kx^k$を求めよ.
(3)$p \neq 1$のとき,関係式
\[ c_1=0,\quad \frac{pc_{n+1}}{n}-\frac{c_n}{n+1}=\frac{1}{n+1} \quad (n=1,\ 2,\ \cdots) \]
によって定義される数列$\{c_n\}$の一般項を求めよ.
明治大学 私立 明治大学 2011年 第3問
次の空欄$[ア]$から$[オ]$に当てはまるものをそれぞれ入れよ.

関数$f(t)$は$\displaystyle 0<t<\frac{\pi}{2}$において微分可能で$f(t)>0$かつ$f^\prime(t)>0$をみたすとする.また$\displaystyle f \left( \frac{\pi}{3} \right)=2$とする.
媒介変数表示$\displaystyle \left\{ \begin{array}{l}
x=f(t) \cos t \\
y=f(t) \sin t
\end{array} \right. \left( 0<t<\frac{\pi}{2} \right)$により定まる曲線を$C$とする.$C$上の点$\mathrm{P}(f(t) \cos t,\ f(t) \sin t)$における接線と$x$軸との交点を$\mathrm{A}(a(t),\ 0)$とすれば
\[ a(t)=\frac{(f(t))^2}{f^\prime(t) [ア]+f(t) [イ]} \]
となる.$\mathrm{O}$を原点とするとき,すべての$t$に対し$\mathrm{OP}=\mathrm{OA}$であれば$f$は
\[ f^\prime(t) [ア]+f(t) [ウ]=0 \]
をみたす.この式の両辺に$\cos t+1$をかけて整理すると
\[ \frac{d}{dt} \left( f(t) [エ] \right)=0 \]
となり,
\[ f(t)=[オ] [エ]^{-1} \]
が得られる.
スポンサーリンク

「両辺」とは・・・

 まだこのタグの説明は執筆されていません。