タグ「両方」の検索結果

9ページ目:全110問中81問~90問を表示)
成城大学 私立 成城大学 2012年 第3問
座標空間において,$2$点$\mathrm{A}(\sqrt{6},\ 2,\ -\sqrt{6})$,$\mathrm{B}(-\sqrt{2},\ 2 \sqrt{3},\ \sqrt{2})$がある.原点を$\mathrm{O}$とするとき,以下の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の両方に垂直である単位ベクトル$\overrightarrow{p}$をすべて求めよ.
(2)平面$z=1$と直線$\mathrm{OA}$および直線$\mathrm{OB}$との交点を,それぞれ$\mathrm{A}^\prime$,$\mathrm{B}^\prime$とする.このとき線分$\mathrm{A}^\prime \mathrm{B}^\prime$の長さを求めよ.
成城大学 私立 成城大学 2012年 第1問
あるタカは$\mathrm{A}$地点と$\mathrm{B}$地点のどちらか一方に確率$\displaystyle \frac{1}{2}$で最初に現れる.どちらの地点でも,餌を得ると直ちに巣に帰るが,餌が得られないともう一方の地点に現れてから巣に帰る.タカが各地点に現れたとき,餌を得る確率はどちらの地点でも$\displaystyle \frac{3}{5}$であり,一度巣に帰ると再び両地点に現れることはないとして,以下の問いに答えよ.

(1)このタカが$\mathrm{A}$地点と$\mathrm{B}$地点の両方に現れる確率はいくらか.
(2)このタカが$\mathrm{A}$地点に現れる確率はいくらか.
(3)このタカがどちらかの地点で餌を得る確率はいくらか.
大阪大学 国立 大阪大学 2011年 第3問
$a,\ b,\ c$を実数とする.ベクトル$\overrightarrow{v_1}=(3,\ 0),\ \overrightarrow{v_2}=(1,\ 2\sqrt{2})$をとり,$\overrightarrow{v_3}=a\overrightarrow{v_1}+b\overrightarrow{v_2}$とおく.座標平面上のベクトル$\overrightarrow{p}$に対する条件
\[ (*) \qquad (\overrightarrow{v_1}\cdot \overrightarrow{p})\overrightarrow{v_1}+(\overrightarrow{v_2}\cdot \overrightarrow{p})\overrightarrow{v_2}+(\overrightarrow{v_3}\cdot \overrightarrow{p})\overrightarrow{v_3} = c\overrightarrow{p} \]
を考える.ここで$\overrightarrow{v_i}\cdot \overrightarrow{p} \ (i=1,\ 2,\ 3)$はベクトル$\overrightarrow{v_i}$とベクトル$\overrightarrow{p}$の内積を表す.このとき以下の問いに答えよ.

(1)座標平面上の任意のベクトル$\overrightarrow{v}=(x,\ y)$が,実数$s,\ t$を用いて$\overrightarrow{v}=s\overrightarrow{v_1}+t\overrightarrow{v_2}$と表されることを,$s$および$t$の各々を$x,\ y$の式で表すことによって示せ.
(2)$\overrightarrow{p}=\overrightarrow{v_1}$と$\overrightarrow{p}=\overrightarrow{v_2}$の両方が条件$(*)$をみたすならば,座標平面上のすべてのベクトル$\overrightarrow{v}$こ対して,$\overrightarrow{p}=\overrightarrow{v}$が条件$(*)$をみたすことを示せ.
(3)座標平面上のすべてのベクトル$\overrightarrow{v}$に対して,$\overrightarrow{p}=\overrightarrow{v}$が条件$(*)$をみたす.このような実数の組$(a,\ b,\ c)$をすべて求めよ.
鳥取大学 国立 鳥取大学 2011年 第2問
下図において,北隅のAの文字から南隅のAの文字まで,南東または南西に文字をたどって最短で進むとき,経路上の文字を読むとABRACADABRAとなる.このとき,次の問いに答えよ.

(1)下図で北隅のAから南隅のAまで最短の進み方(以後,「ABRACADABRAの読み方」という)は全部で何通りあるか.
(2)下図の$T$地点を通るABRACADABRAの読み方は何通りあるか.
(3)下図の$T$地点と$U$地点の両方を通るABRACADABRAの読み方は何通りあるか.
(4)下図の$T$地点と$U$地点のどちらも通らないABRACADABRAの読み方は何通りあるか.

\setlength\unitlength{1truecm}

(図は省略)
鳥取大学 国立 鳥取大学 2011年 第4問
下図において,北隅のAの文字から南隅のAの文字まで,南東または南西に文字をたどって最短で進むとき,経路上の文字を読むとABRACADABRAとなる.このとき,次の問いに答えよ.

(1)下図で北隅のAから南隅のAまで最短の進み方(以後,「ABRACADABRAの読み方」という)は全部で何通りあるか.
(2)下図の$T$地点を通るABRACADABRAの読み方は何通りあるか.
(3)下図の$T$地点と$U$地点の両方を通るABRACADABRAの読み方は何通りあるか.
(4)下図の$T$地点と$U$地点のどちらも通らないABRACADABRAの読み方は何通りあるか.

\setlength\unitlength{1truecm}

(図は省略)
山梨大学 国立 山梨大学 2011年 第3問
放物線$y=x^2+2x$を$C_1$,放物線$y=x^2-2x+2$を$C_2$とする.

(1)$C_1$と$C_2$を$y=(x-p)^2+q$の形に変形せよ.また,$C_1$と$C_2$の交点の座標を求めよ.
(2)$C_1$と$C_2$の両方に接する直線$\ell$の方程式を求めよ.
(3)$C_1$と$C_2$および$\ell$で囲まれた部分の面積を求めよ.
九州工業大学 国立 九州工業大学 2011年 第2問
実数$a$と行列$A=\biggl( \begin{array}{cc}
a-2 & -2a \\
4a & -2a+2
\end{array} \biggr)$がある.$A$が表す座標平面上の点の移動に関する以下の二つの条件を考える.

条件1: 原点O以外のある点Pが$A$によってP自身に移される.
条件2: 原点O以外のある点Qが$A$によって線分OQ上のQ以外の点に移される.

以下の問いに答えよ.

(i) 条件1がみたされるとき,$a$の値を求めよ.
(ii) 条件1,条件2の両方がみたされるとき,$a$の値を求めよ.
(iii) $a$は$(ⅱ)$で求めた値とする.自然数$n$に対して,点R$_n$を次のように定める.
\begin{itemize}
R$_1$の座標を$(4,\ 5)$とする.
$A$によってR$_{n-1}$が移される先をR$_n \ (n \geqq 2)$とする.
\end{itemize}
R$_n$の座標を$(x_n,\ y_n)$とするとき,$\displaystyle x_n=\frac{12}{2^n}-2,\ y_n=\frac{16}{2^n}-3$であることを数学的帰納法を用いて証明せよ.
長岡技術科学大学 国立 長岡技術科学大学 2011年 第4問
$\mathrm{A}$,$\mathrm{B}$の$2$種類のカードがある.$\mathrm{A}$を$2$枚,$\mathrm{B}$を$3$枚それぞれ積み重ね,$3$人の人が順番に$1$枚のカードを次のように持ち帰ることにする.$\mathrm{A}$,$\mathrm{B}$両方のカードが残っているときは$\mathrm{A}$か$\mathrm{B}$かを確率$\displaystyle \frac{1}{2}$で選んで$1$枚持ち帰る.また,どちらか一方のカードしか残っていないときはそれを$1$枚持ち帰る.このようにすると最後に$2$枚のカードが残る.これについて次の問いに答えなさい.

(1)$\mathrm{A}$のカードが$2$枚残る確率を求めなさい.
(2)$\mathrm{B}$のカードが$2$枚残る確率を求めなさい.
(3)$\mathrm{B}$のカードが$2$枚残ったとき,$1$番目の人が$\mathrm{B}$のカードを持ち帰った条件付き確率を求めなさい.
山梨大学 国立 山梨大学 2011年 第2問
実数全体で定義された関数$F(x)$が次の条件$①$と$②$の両方を満たすとき「$F(x)$は性質$(\mathrm{P})$を持つ」ということにする.

$①$ すべての実数$x$について$F(x)>0$である.
$②$ $F(x)$は何度でも微分が可能で$\displaystyle \frac{d^2}{dx^2}\log F(x)=\frac{1}{\{F(x)\}^2}$を満たす.


(1)$y=f(x)$が性質$(\mathrm{P})$を持つとき$y^{\prime\prime}y-(y^\prime)^2=1$,$y^{\prime\prime\prime}y-y^{\prime\prime}y^\prime=0$となること,および$\displaystyle \frac{y^{\prime\prime}}{y}$は正の定数であることを示せ.
(2)$y=f(x)$は性質$(\mathrm{P})$を持つとする.$\displaystyle \frac{y^{\prime\prime}}{y}=k^2$($k$は正の定数)とおくとき,$k^2y^2-(y^\prime)^2=1$であることを示し,さらに$ky-y^\prime>0$および$ky+y^\prime>0$が成り立つことを示せ.
(3)$c$を実数とする.(2)のとき,関数$\displaystyle kf(c)y+\frac{1}{k}f^\prime(c)y^\prime$も性質$(\mathrm{P})$を持つことを証明せよ.ただし$①$を示すために
\[ kf(c)y+\frac{1}{k}f^\prime(c)y^\prime=f(c)(ky \mp y^\prime) \pm \frac{1}{k}y^\prime (kf(c) \pm f^\prime(c)) \quad (\text{複号同順}) \]
を利用してもよい.
金沢工業大学 私立 金沢工業大学 2011年 第2問
放物線$y=x^2-4x-6$を$C_1$とし,$C_1$を$x,\ y$軸方向にそれぞれ$3,\ -9$だけ平行移動して得られる放物線を$C_2$とする.

(1)放物線$C_2$の方程式は$y=x^2-[サシ]x+[ス]$である.
(2)放物線$C_2$の頂点の座標は$([セ],\ [ソタチ])$である.
(3)放物線$C_1$と$C_2$の両方の頂点を通る直線の方程式は
\[ y=[ツテ]x-[ト] \]
である.
スポンサーリンク

「両方」とは・・・

 まだこのタグの説明は執筆されていません。