タグ「両方」の検索結果

3ページ目:全110問中21問~30問を表示)
島根大学 国立 島根大学 2015年 第1問
下図のように,南北に$7$本,東西に$6$本の道がある.ただし,$\mathrm{C}$地点は通れないものとする.このとき,次の問いに答えよ.
(図は省略)

(1)$\mathrm{O}$地点を出発し,$\mathrm{A}$地点を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.
(2)$\mathrm{O}$地点を出発し,$\mathrm{B}$地点を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.
(3)$\mathrm{O}$地点を出発し,$\mathrm{A}$地点と$\mathrm{B}$地点の両方を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.なお,同じ道を何度通ってもよいとする.
島根大学 国立 島根大学 2015年 第1問
下図のように,南北に$7$本,東西に$6$本の道がある.ただし,$\mathrm{C}$地点は通れないものとする.このとき,次の問いに答えよ.
(図は省略)

(1)$\mathrm{O}$地点を出発し,$\mathrm{A}$地点を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.
(2)$\mathrm{O}$地点を出発し,$\mathrm{B}$地点を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.
(3)$\mathrm{O}$地点を出発し,$\mathrm{A}$地点と$\mathrm{B}$地点の両方を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.なお,同じ道を何度通ってもよいとする.
山形大学 国立 山形大学 2015年 第1問
二つの放物線

$C_1:y=x^2$
$\displaystyle C_2:y=\frac{1}{2}(x-a)^2+b$

がある.ただし,$a,\ b$は実数であり,$b>0$とする.以下の問いに答えよ.

(1)放物線$C_1$上の点$\mathrm{P}(p,\ p^2)$における接線$\ell$の方程式を求めよ.
(2)接線$\ell$が$C_2$にも接する場合の$p$を$a$と$b$を用いて表せ.
(3)$(2)$より$C_1,\ C_2$の両方に接する直線が$2$本存在することがわかる.この二つの直線の交点$\mathrm{Q}$の座標を$a$と$b$を用いて表せ.
(4)放物線$C_2$の頂点が曲線$y=e^{-2x^2}$上を動くとき,交点$\mathrm{Q}$の軌跡を$y=f(x)$で表す.関数$f(x)$を求めよ.また$f(x)$の増減と凹凸を調べ軌跡の概形をかけ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第4問
$1$から$9$までの自然数のそれぞれに赤か青の色を付ける操作を考える.

(1)$X$をこれら$1$から$9$までの自然数のうちの相異なる$3$つの数からなる集合とする.$1$から$9$のそれぞれに確率$\displaystyle \frac{1}{2}$で赤か青の色を付けるとき,$X$に属するすべての数がすべて同じ色である確率を求めよ.
(2)一般に,ある試行における$3$つの事象$A,\ B,\ C$について,
\[ P(A \cup B \cup C) \leqq P(A)+P(B)+P(C) \]
が成り立つことを示せ.ここで$P(A)$は事象$A$が起こる確率である.
(3)$1$から$9$までの自然数のうちの相異なる$3$つの数からなる集合が$3$つある.それを$X,\ Y,\ Z$とする.$1$から$9$のそれぞれに確率$\displaystyle \frac{1}{2}$で赤か青の色を付ける操作をしたとき,$X,\ Y,\ Z$のどれにも両方の色の数が含まれる確率が$0$ではないことを示せ.ただし,$X \cap Y$,$Y \cap Z$,$Z \cap X$は空集合とは限らない.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$にあてはまる数または式を記入せよ.

(1)空間内の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 0,\ 1)$,$\mathrm{C}(2,\ 2,\ 0)$とする.実数$p,\ q$を用いて点$\mathrm{H}$を$\overrightarrow{\mathrm{AH}}=p \overrightarrow{\mathrm{AB}}+q \overrightarrow{\mathrm{AC}}$で定める.原点を$\mathrm{O}(0,\ 0,\ 0)$として,$\overrightarrow{\mathrm{OH}}$が$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の両方に垂直であるとき,$p=[ア]$,$q=[イ]$である.
(2)不等式$x+3<5 |x-1|$を満たす実数$x$の範囲は,$x<[ウ]$または$x>[エ]$である.
(3)多項式$(x^5+1)^2$を$x^2+x+1$で割った余りを$Ax+B$とすると,定数$A$と$B$は$A=[オ]$,$B=[カ]$である.
(4)$0<a<1$のとき$\displaystyle \lim_{n \to \infty} \frac{1}{n} \log (a^{2n}+a^{3n})=[キ]$である.
(5)大中小の$3$つのサイコロをふって,出た目の和が$9$になる確率は$[ク]$である.
(6)$0 \leqq \theta \leqq \pi$のとき,$\displaystyle \int_0^{\frac{\pi}{2}} \cos (x-\theta) \, dx$の最大値は$[ケ]$であり,最小値は$[コ]$である.
立教大学 私立 立教大学 2015年 第3問
$t$を正の実数とする.放物線$C_1:y=x^2+1$と放物線$C_2:y=-tx^2-1$の両方に接する直線のうち傾きが正であるものを$\ell$とする.このとき,次の問いに答えよ.

(1)直線$\ell$の方程式を$t$を用いて表せ.
(2)直線$\ell$と放物線$C_1$の接点を$\mathrm{P}$,直線$\ell$と放物線$C_2$の接点を$\mathrm{Q}$とする.点$\mathrm{P}$と点$\mathrm{Q}$の座標をそれぞれ$t$を用いて表せ.
(3)線分$\mathrm{PQ}$を$t:1$に内分する点$\mathrm{R}$の座標を$t$を用いて表せ.
(4)点$\mathrm{R}$の$y$座標がとりうる値の範囲を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
ある村では公共サービス$\mathrm{X}$と$\mathrm{Y}$を提供している.提供された$\mathrm{X}$の量を$x$,$\mathrm{Y}$の量を$y$で表わす.技術的条件や予算の制約によって$(x,\ y)$が実現するのは$x,\ y$がつぎの不等式をみたすときである.
\[ \begin{array}{l}
x+y \leqq 200 \\
x+5y \leqq 790 \phantom{\frac{[ ]}{2}} \\
3x+4y \leqq 720 \phantom{\frac{[ ]}{2}} \\
x,\ y \geqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \]
$(x,\ y)$が実現する領域は$5$角形であり,その$5$頂点は$(0,\ 0)$,$(200,\ 0)$,$(0,\ 158)$および$\mathrm{A}([$53$][$54$][$55$],\ [$56$][$57$][$58$])$,$\mathrm{B}(80,\ [$59$][$60$][$61$])$である.

現在,一般の村民は$xy$が最大になることを望んでおり,一方,村の有力者一族は$x+10y$が最大になることを望んでいる.村長は$x$と$y$を自由に選ぶことができるが,両方の意向を尊重して
\[ \alpha xy+(1-\alpha)(x+10y) \quad (0<\alpha<1) \]
を最大化する方針をとった.
仮に,$\displaystyle \alpha=\frac{1}{3}$ならば村長の選択は$(x,\ y)=([$62$][$63$],\ [$64$][$65$][$66$])$となる.
村長は最大化のために選択すべき点を線分$\mathrm{AB}$上にとることにした.しかし,予算上端点$\mathrm{A}$も$\mathrm{B}$も選択することが認められないことがわかった.すると,$\alpha$は
\[ \frac{[$67$][$68$]}{[$69$][$70$][$71$]}<\alpha<\frac{[$72$][$73$]}{133} \]
の範囲に限定される.
東京医科大学 私立 東京医科大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)ベクトル$\overrightarrow{a}=(2,\ 1)$,$\overrightarrow{b}=(4,\ 3)$,$\overrightarrow{c}=(3,\ 0)$,$\overrightarrow{d}=(1,\ 2)$に対して,等式
\[ |\overrightarrow{a}+t \overrightarrow{b}|=|\overrightarrow{c}+t \overrightarrow{d}| \]
をみたす実数$t$の値は$2$つあり,それらを$t_1,\ t_2 (t_1<t_2)$とすれば,
\[ t_1=[アイ],\quad t_2=\frac{[ウ]}{[エ]} \]
である.
(2)座標平面上の$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-(x-9)^2+28 \]
を考える.$C_1,\ C_2$の両方に接する直線は$2$つあり,それらの方程式を傾きの小さい方から順に並べれば,
\[ y=[オ]x-[カ],\quad y=[キク]x-[ケコ] \]
である.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$\mathrm{O}$を原点とする座標空間に,$2$点$\mathrm{A}(0,\ 1,\ 2)$,$\mathrm{B}(1,\ 2,\ 0)$がある.

(1)$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{\sqrt{[$1$][$2$]}}{[$3$]}$である.
(2)点$\mathrm{C}$の位置を,位置ベクトル
\[ \overrightarrow{\mathrm{OC}}=\frac{2}{3} \overrightarrow{\mathrm{OA}}+\frac{2}{3} \overrightarrow{\mathrm{OB}} \]
によって定める.このとき,$\triangle \mathrm{ABC}$と$\triangle \mathrm{OAB}$の面積の比は
\[ \frac{\triangle \mathrm{ABC}}{\triangle \mathrm{OAB}}=\frac{[$4$]}{[$5$]} \]
である.
(3)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の両方に垂直な単位ベクトルのうちの$1$つは,
\[ \frac{\sqrt{[$6$][$7$]}}{21} \left( [$8$],\ -[$9$],\ 1 \right) \]
である.
(4)$t$を実数として,点$\displaystyle \mathrm{D} \left( \frac{t^2}{4},\ 4t,\ 19 \right)$を定める.このとき,四面体$\mathrm{ABCD}$の体積$V(t)$は
\[ V(t)=\frac{[$10$]}{[$11$][$12$]} \left( t^2-[$13$]t+[$14$][$15$] \right) \]
である.
(5)数列$\{a_n\}$を次のように定める.
\[ a_1=1,\quad a_{n+1}=a_n+\frac{n+1}{10} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$V(a_n)$は,$n=[$16$]$で最小となる.
日本女子大学 私立 日本女子大学 2015年 第3問
座標平面上の$2$つの放物線$y=4x^2+12x+2$と$y=x^2+2$をそれぞれ$C_1$と$C_2$とする.放物線$C_1$と$C_2$の両方に接し,傾きが正の直線を$\ell$とする.以下の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$の方程式を$y=ax+b$($a,\ b$は定数)とおく.$C_1$と$\ell$の接点の$x$座標と$C_2$と$\ell$の接点の$x$座標の小さい方を$s$,大きい方を$t$とする.連立不等式
\[ y \leqq 4x^2+12x+2,\quad y \leqq x^2+2,\quad y \geqq ax+b,\quad s \leqq x \leqq t \]
の表す領域の面積を求めよ.
スポンサーリンク

「両方」とは・・・

 まだこのタグの説明は執筆されていません。