タグ「両方」の検索結果

11ページ目:全110問中101問~110問を表示)
愛媛大学 国立 愛媛大学 2010年 第4問
$4$の数字が書かれたカードが$1$枚,$3$の数字が書かれたカードが$1$枚,$2$の数字が書かれたカードが$2$枚,$1$の数字が書かれたカードが$2$枚,$0$の数字が書かれたカードが$4$枚ある.これら$10$枚のカードをよくまぜて,左から右に一列に並べる.

(1)左から$4$番目までの$4$枚のカードに書かれた数がすべて$0$となる確率を求めよ.
(2)右から$1$番目のカードに書かれた数の期待値を求めよ.
(3)左から$3$番目までの$3$枚のカードに書かれた$3$つの数について,次の条件$①,\ ②$を考える.

\mon[$①$] $3$つの数がすべて異なる.
\mon[$②$] $3$つの数の中で,左から$1$番目のカードに書かれた数$a$が最大である.

条件$①,\ ②$の両方が同時にみたされた場合の得点を$a$とし,それ以外の場合の得点を$0$とする.

(i) 得点が$4$となる確率を求めよ.
(ii) 得点の期待値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2010年 第2問
$xy$平面上に2つの円
\begin{align}
& C_1:x^2+y^2=16 \nonumber \\
& C_2:(x-6)^2+y^2=1 \nonumber
\end{align}
がある.このとき以下の問いに答えよ.

(1)$C_1$と$C_2$の両方に接する接線の方程式をすべて求めよ.
(2)点Pを通る任意の直線が$C_1$または$C_2$の少なくとも一方と共有点を持つとする.このような点Pの存在する領域を図示せよ.
お茶の水女子大学 国立 お茶の水女子大学 2010年 第2問
$xy$平面上に2つの円
\begin{align}
& C_1:x^2+y^2=16 \nonumber \\
& C_2:(x-6)^2+y^2=1 \nonumber
\end{align}
がある.このとき以下の問いに答えよ.

(1)$C_1$と$C_2$の両方に接する接線の方程式をすべて求めよ.
(2)点Pを通る任意の直線が$C_1$または$C_2$の少なくとも一方と共有点を持つとする.このような点Pの存在する領域を図示せよ.
愛媛大学 国立 愛媛大学 2010年 第5問
次の問いに答えよ.

(1)次の連立不等式を解け.
\[ \left\{
\begin{array}{l}
4x^2-4x-15<0 \\
x^2-2x \geqq 0
\end{array}
\right. \]
(2)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$と$x \leqq y$の両方をみたす自然数の組$(x,\ y)$をすべて求めよ.
(3)方程式$\displaystyle \left( \log_2\sqrt{x}+\log_2x^2+\log_2\frac{1}{x} \right)^2=9$を解け.
(4)原点O,および3点A$(1,\ 0,\ 0)$,B$(0,\ 1,\ 0)$,C$(0,\ 0,\ 1)$がある.$0<s<1$に対して,線分AB,線分CAを$s:(1-s)$に内分する点を,それぞれP,Qとするとき,内積$\overrightarrow{\mathrm{OP}}\cdot \overrightarrow{\mathrm{OQ}}$を$s$を用いて表せ.
(5)等式$\displaystyle \int_0^{\frac{\pi}{4}} (x+a) \cos 2x \, dx=\frac{\pi}{8}$が成り立つとき,定数$a$の値を求めよ.
早稲田大学 私立 早稲田大学 2010年 第3問
$t$を実数とする.$2$つの放物線

$y=x^2+1 \qquad \cdots\cdots①$
$y=-(x-t)^2+t \qquad \cdots\cdots②$

の両方に接する$2$本の直線を$\ell_1,\ \ell_2$とし,$\ell_1$と$\ell_2$の交点を$\mathrm{P}$,$\ell_1$と$①$の接点を$\mathrm{A}(\alpha,\ \alpha^2+1)$,$\ell_2$と$①$の接点を$\mathrm{B}(\beta,\ \beta^2+1)$とする.次の設問に答えよ.

(1)$\mathrm{P}$の座標を$\alpha,\ \beta$を用いて表せ.
(2)三角形$\mathrm{APB}$の面積を$S(t)$とするとき,$S(t)$を$t$の式で表せ.
(3)$S(t)$の最小値を求めよ.
金沢工業大学 私立 金沢工業大学 2010年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}$のとき,$\displaystyle x+\frac{1}{x}=\sqrt{[アイ]}$,$\displaystyle x^2+\frac{1}{x^2}=[ウ]$である.

(2)$|\abs{x-1|-2}=3$の解は$x=[エオ],\ [カ]$である.
(3)$2$つの$2$次関数$y=6x^2+2kx+k$,$y=-x^2+(k-6)x-1$のグラフが両方とも$x$軸と共有点をもたないような定数$k$の値の範囲は$[キ]<k<[ク]$である.
(4)$0^\circ \leqq \theta \leqq 180^\circ$で$\displaystyle \tan \theta=-\frac{4}{3}$のとき,$\displaystyle \cos \theta=\frac{[ケコ]}{[サ]}$であり,$\displaystyle \sin (180^\circ-\theta)=\frac{[シ]}{[ス]}$である.
(5)不等式$\displaystyle \frac{2x-5}{4}<\frac{x+4}{3} \leqq \frac{3x+1}{6}$の解は$\displaystyle [セ] \leqq x<\frac{[ソタ]}{[チ]}$である.
(6)$1$から$100$までの整数のうち,$4$の倍数かつ$6$の倍数である整数は$[ツ]$個あり,$4$の倍数または$6$の倍数である整数は$[テト]$個ある.
(7)$1$個のさいころを投げて,偶数の目が出たときはその目の数の$2$倍を得点とし,奇数の目が出たときはその目の数の$3$倍を得点とするゲームを行う.このとき,このゲームの得点の期待値は$\displaystyle \frac{[アイ]}{[ウ]}$である.
(8)図のように,直線$\ell$は中心を$\mathrm{O}$とする円と点$\mathrm{A}$において接している.また,$\ell$上の点$\mathrm{P}$と$\mathrm{O}$を通る直線と円との交点を図のように$\mathrm{B}$,$\mathrm{C}$とし,$\angle \mathrm{PAB}=115^\circ$であるとする.このとき,
\[ \angle \mathrm{ABC}=[エオ]^\circ,\quad \angle \mathrm{APC}=[カキ]^\circ \]
である.
(図は省略)
北海道科学大学 私立 北海道科学大学 2010年 第7問
自然数$a,\ b$に関する命題,

(i) $a,\ b$が両方とも奇数ならば$ab$は奇数である.
(ii) $ab$が奇数ならば$a^2+b^2$は偶数である.
(iii) $3a+2b$が奇数ならば,$a,\ b$は両方とも奇数である.

について,次の問に答えよ.

(1)これらの命題のうち,真であるものは$[ ]$.
(2)これらの命題のうち,逆が真であるものは$[ ]$.
星薬科大学 私立 星薬科大学 2010年 第5問
放物線$y=x^2+1$を$C_1$,放物線$y=-x^2+6x-8$を$C_2$として次の問いに答えよ.

(1)点$\displaystyle \left( \frac{[ ]}{[ ]},\ [ ] \right)$に関して,$C_1$と$C_2$は対称である.
(2)$C_1$と$C_2$の両方に接する$2$つの接線のうち,$x$軸と交わらない方を$\ell_1$,$x$軸と交わる方を$\ell_2$とすると,$\ell_1$の方程式は$y=[ ]$,$\ell_2$の方程式は$y=[ ] x-[ ]$である.
(3)$C_1$と$\ell_1$および$\ell_2$とで囲まれた部分の面積と,$C_2$と$\ell_1$および$\ell_2$とで囲まれた部分の面積の和は$\displaystyle \frac{[ ]}{[ ]}$である.
神奈川大学 私立 神奈川大学 2010年 第2問
さいころを$2$つ同時に投げる試行について,以下の問いに答えよ.

(1)$1$回の試行で両方とも偶数の目の出る確率を求めよ.
(2)試行を$3$回繰り返すとき,少なくとも$1$回は両方とも偶数の目の出る確率を求めよ.
(3)$1$回の試行で,$2$つのさいころの目が両方とも偶数ならば$4$点,それ以外ならば$2$点の得点がもらえるとする.試行を$3$回繰り返したときにもらえる総得点の期待値を求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第3問
$f(x)=2x^2-4x+3,\ g(x)=-x^2-2x-2$とする.次の問いに答えよ.

(1)放物線$y=f(x)$の頂点と放物線$y=g(x)$の頂点を通る直線とこれらの放物線との交点をすべて求めよ.
(2)放物線$y=f(x)$と放物線$y=g(x)$の両方に接する2本の直線の交点を求めよ.
スポンサーリンク

「両方」とは・・・

 まだこのタグの説明は執筆されていません。