タグ「不等式」の検索結果

59ページ目:全633問中581問~590問を表示)
静岡大学 国立 静岡大学 2010年 第2問
次の問いに答えよ.

(1)不等式$x+x^2 \log x > 0$が成り立つことを示せ.
(2)関数$y = -x^2 \log x$の増減,グラフの凹凸を調べ,グラフの概形をかけ.
広島大学 国立 広島大学 2010年 第2問
座標平面上に点O$(0,\ 0)$と点P$(4,\ 3)$をとる.不等式$(x-5)^2 +(y-10)^2 \leqq 16$の表す領域を$D$とする.次の問いに答えよ.

(1)$k$は定数とする.直線$\displaystyle y = -\frac{4}{3}x+k$上の点をQとするとき,ベクトル$\overrightarrow{\mathrm{OQ}}$と$\overrightarrow{\mathrm{OP}}$の内積$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OP}}$を$k$を用いて表せ.
(2)点Rが$D$全体を動くとき,ベクトル$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OR}}$の内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OR}}$の最大値および最小値を求めよ.
筑波大学 国立 筑波大学 2010年 第3問
$n$を自然数とし,1から$n$までの自然数の積を$n!$で表す.このとき以下の問いに答えよ.

(1)単調に増加する連続関数$f(x)$に対して,不等式$\displaystyle \int_{k-1}^k f(x) \, dx \leqq f(k)$を示せ.
(2)不等式$\displaystyle \int_1^n \log x\, dx \leqq \log n!$を示し,不等式$n^ne^{1-n} \leqq n!$を導け.
(3)$x \geqq 0$に対して,不等式$x^ne^{1-x} \leqq n!$を示せ.
岩手大学 国立 岩手大学 2010年 第6問
次の問いに答えよ.ただし,$\log$は自然対数とする.

(1)$0<x<1$なる実数$x$に対して,不等式
\[ \log \frac{1+x}{1-x}<2x+\frac{2}{3} \cdot \frac{x^3}{1-x^2} \]
が成り立つことを示せ.
(2)不等式$\displaystyle \log 2< \frac{25}{36}$が成り立つことを示せ.
信州大学 国立 信州大学 2010年 第1問
次の問いに答えよ.

(1)2次方程式$x^2 + (2a-1)x+a^2-3a-4 = 0$が少なくとも1つ正の解をもつような実数の定数$a$の値の範囲を求めよ.
(2)不等式$|2 \sin (x+y)| \geqq 1$の表す点$(x,\ y)$の領域を,$0 \leqq x \leqq \pi,\ 0 \leqq y \leqq \pi$の範囲で図示せよ.
(3)座標平面上に3点A$(2,\ 5)$,B$(1,\ 3)$,P$_1(5,\ 1)$をとる.まず,点P$_1$と点Aの中点をQ$_1$,点Q$_1$と点Bの中点をP$_2$とする.次に,点 P$_2$と点Aの中点をQ$_2$,点Q$_2$と点Bの中点をP$_3$とする.以下同様に繰り返し,点P$_n$と点Aの中点をQ$_n$,点Q$_n$と点Bの中点をP$_{n+1} \ (n =1,\ 2,\ 3,\ \cdots)$とする.点P$_n$の$x$座標を$a_n$とするとき,$a_n$を$n$の式で表し,$\displaystyle \lim_{n \to \infty} a_n$を求めよ.
徳島大学 国立 徳島大学 2010年 第2問
数列$\{a_n\}$が$\displaystyle a_1=1,\ a_{n+1}=\frac{1}{2}\left( a_n+\frac{3}{a_n} \right) \ (n=1,\ 2,\ 3,\ \cdots)$で定められるとき,次の問いに答えよ.

(1)$\displaystyle 0<a_2-\sqrt{3}<\frac{1}{2}$を示せ.
(2)$n$が2以上の自然数であるとき,不等式$\displaystyle 0<a_n-\sqrt{3}< \left( \frac{1}{2} \right)^{n-1}$を数学的帰納法によって証明せよ.
(3)数列$\{a_n\}$の極限値を求めよ.
宮崎大学 国立 宮崎大学 2010年 第5問
座標平面上に2つの円
\begin{eqnarray}
& & C_1:(x+1)^2+(y-1)^2=1 \nonumber \\
& & C_2:(x-1)^2+(y-1)^2=1 \nonumber
\end{eqnarray}
がある.不等式$y>2$が表す領域$D$内に点P$(a,\ b)$をとる.点Pから円$C_1,\ C_2$にひいた接線と$x$軸との交点をそれぞれA,Bとする.ただし,下図のように$\triangle$PABは円$C_1,\ C_2$をともに含むものとする.このとき,次の各問に答えよ.

(1)$b$を定数とするとき,辺ABの長さが最小となるのは$a=0$のときであることを示せ.
(2)点Pが領域$D$内を動くとき,$\triangle$PABの面積の最小値を求めよ.


\setlength\unitlength{1truecm}
(図は省略)
鳥取大学 国立 鳥取大学 2010年 第1問
次の問いに答えよ.

(1)直線$2x+y=16 \cdots\cdots ①,\ 2x+3y=24 \cdots\cdots ②$の$x$切片と$y$切片の座標をそれぞれ求めよ.
(2)(1)で定めた直線$①$と$②$との交点の座標を求めよ.
(3)$4$つの不等式$2x+y \leqq 16,\ 2x+3y \leqq 24,\ x \geqq 0,\ y \geqq 0$の表す領域を$F$とする.$F$の面積を求めよ.
(4)点$(x,\ y)$が(3)で定めた領域$F$を動くとき,$x+y$の最大値と最小値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2010年 第2問
定数$a$,関数$f(x)$,および数列$\{x_n\}$を次のように定める.
\begin{eqnarray}
& & 1<a<2,\quad f(x)=\frac{1}{2}(3x^2-x^3) \nonumber \\
& & x_1=a,\quad x_{n+1}=f(x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \nonumber
\end{eqnarray}

(1)関数$f(x)$の増減を調べよ.
(2)すべての自然数$n$に対して$1<x_n<2$を示せ.
(3)すべての自然数$n$に対して$x_{n+1}>x_n$を示せ.
(4)次の不等式を満たす$n$に無関係な定数$b \ (0<b<1)$があることを示せ.
\[ 2-x_{n+1} \leqq b(2-x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
(5)数列$\{x_n\}$が収束することを示し,その極限値を求めよ.
大分大学 国立 大分大学 2010年 第1問
円周率$\pi$に関して次の不等式が成立することを証明せよ.ただし,数値$\pi=3.141592 \cdots$を使用して直接比較する解答は0点とする.
\[ 3\sqrt{6} -3\sqrt{2} <\pi <24-12\sqrt{3} \]
スポンサーリンク

「不等式」とは・・・

 まだこのタグの説明は執筆されていません。