タグ「不等式」の検索結果

50ページ目:全633問中491問~500問を表示)
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第1問
以下の問いに答えよ.

(1)$a$と$b$を正の実数とするとき,不等式$a+b \geqq 2\sqrt{ab}$が成り立つことを示せ.また,等号が成り立つのは,どのようなときか.
(2)$p$と$q$を$1$より大きい実数とするとき,$\log_pq+4\log_qp$の最小値を求めよ.また,その最小値をとるのは,$p$と$q$がどのような関係をみたすときか.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第7問
原点$\mathrm{O}$を中心とする半径$1$の円において扇形$\mathrm{OAB}$を考える.ただし,点$\mathrm{A}$は$(1,\ 0)$であり,点$\mathrm{B}$は第$1$象限にあるとする.扇形$\mathrm{OAB}$の中心角は,$x$ラジアン$\displaystyle \left( 0<x<\frac{\pi}{2} \right)$であるとする.点$\mathrm{B}$から$\mathrm{OA}$におろした垂線を$\mathrm{BC}$,点$\mathrm{A}$における円の接線が,点$\mathrm{O}$と点$\mathrm{B}$を通る直線と交わる点を$\mathrm{D}$とする.以下の問いに答えよ.

(1)三角形$\mathrm{ODA}$,三角形$\mathrm{OAB}$,扇形$\mathrm{OAB}$の面積を,$x$を用いてそれぞれ表せ.
(2)不等式$\displaystyle \cos x<\frac{\sin x}{x}<1$が成り立つことを示せ.
(3)$\displaystyle \lim_{x \to +0}\frac{\sin x}{x}=1$を示せ.ただし,$x \to +0$は,$x$が正の値をとりながら限りなく$0$に近づくことを表す.
会津大学 公立 会津大学 2012年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.

(i) $\displaystyle \int_1^4 \sqrt{x} \, dx=[ ]$
(ii) $\displaystyle \int_0^{\frac{\pi}{2}} \sin^2 x \cos x \, dx=[ ]$

(2)$2$つのベクトル$\overrightarrow{a}=(1,\ 3)$,$\overrightarrow{b}=(2,\ -1)$に対して,$|\overrightarrow{a}+t \overrightarrow{b}|$は$t=[ ]$のとき,最小値$[ ]$をとる.
(3)$0 \leqq \theta \leqq \pi$において$\sin 2\theta-2 \cos \theta=0$のとき,$\theta=[ ]$である.
(4)不等式$\log_3(2x-3)<2$をみたす$x$の値の範囲は$[ ]$である.
(5)$4$つの袋があり,各袋に赤,青,黄の玉が$1$つずつ入っている.各袋から$1$つずつ玉を取り出すとき,取り出した$4$つの玉がすべて同じ色である確率は$[ ]$であり,$2$種類の色である確率は$[ ]$である.
福岡女子大学 公立 福岡女子大学 2012年 第3問
実数$t$を$0<t \leqq 1$とし,図$1$の斜線部分の図形$A$の面積を$S(t)$で表す.次の問に答えなさい.

(1)$S(t)$を$t$の式で表しなさい.
(2)図$2$,図$3$を参考にして,不等式
\[ (1-\sqrt{t})^2 \leqq S(1)-S(t) \leqq (1-t)^2 \]
が成り立つことを示しなさい.
(3)(2)の不等式を参考にして,不等式
\[ 2(t-\sqrt{t}) \leqq t \log t \leqq t(t-1) \]
が成り立つことを示しなさい.
(図は省略)
富山県立大学 公立 富山県立大学 2012年 第3問
$a$は定数で$a>1$とする.関数$\displaystyle f(x)=\frac{a}{1+(a-1)e^{-x}}$について,次の問いに答えよ.

(1)不等式$0<f(x)<a$が成り立つことを示せ.また,極限$\displaystyle \lim_{x \to -\infty}f(x)$および$\displaystyle \lim_{x \to \infty}f(x)$を求めよ.
(2)$a=3$のとき,$y=f(x)$のグラフの概形を,極値および変曲点を調べてかけ.
(3)$p$は定数で$p<0$とする.$a=3$のとき,定積分$\displaystyle I(p)=\int_p^0 f(x) \, dx$を求めよ.また,極限$\displaystyle \lim_{p \to -\infty}I(p)$を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2012年 第6問
円$x^2+(y-a)^2=r^2$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積を$V(a)$とするとき,次の問いに答えよ.ただし,$a,\ r$は正の実数とする.

(1)$a \geqq r$のとき,$V(a)$を求めよ.
(2)$0<a<r$とする.

(i) $\displaystyle 0<\theta<\frac{\pi}{2}$のとき,$\sin \theta<\theta<\tan \theta$が成り立つ.このことを用いて,次の不等式が成り立つことを示せ.
\[ \frac{(r+a) \sqrt{r^2-a^2}}{2}<\int_0^{\sqrt{r^2-a^2}} \sqrt{r^2-x^2} \, dx<\frac{(r^2+a^2) \sqrt{r^2-a^2}}{2a} \]
(ii) $(ⅰ)$の結果を用いて,
\[ \frac{2\pi (a-r)(a+r) \sqrt{r^2-a^2}}{3}<V(a)-2\pi^2ar^2<\frac{2\pi (a-r)(a-2r) \sqrt{r^2-a^2}}{3} \]
が成り立つことを示せ.
釧路公立大学 公立 釧路公立大学 2012年 第3問
以下の各問に答えよ.

(1)次の不等式を解け.$2 \log_{\frac{1}{4}} (4x+1) \geqq 1+\log_{\frac{1}{2}} (11-x)$
(2)以下の問に答えよ.

(i) 次の等式を満たす関数$f(x)$を求めよ.$\displaystyle f(x)=x^2-2x+3 \int_0^1 f(t) \, dt$
(ii) $(ⅰ)$で求めた$f(x)$に点$\displaystyle \left( \frac{3}{2},\ -2 \right)$から引いた接線の方程式と,接点の座標を求めよ.
(iii) $(ⅰ)$,$(ⅱ)$で求めた関数$f(x)$と$2$つの接線で囲まれた図形の面積を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2012年 第2問
$n$を$3$以上の整数とし,$n$個の整数$a_1,\ a_2,\ \cdots,\ a_n$は以下の$3$条件を満たすとする.

条件$(ⅰ)$:$a_1 \geqq 2$
条件$(ⅱ)$:$a_1 \geqq a_2 \geqq \cdots \geqq a_n$
条件$(ⅲ)$:$1 \leqq i<j \leqq n$を満たす任意の整数$i,\ j$に対して,不等式
\[ a_i+a_j>0 \]
が成り立つ.

このとき,不等式
\[ \sum_{i=1}^n a_i \geqq n \]
が成り立つことを証明せよ.また,この不等式において等号が成り立つ場合の$n$の値,および$n$個の整数の組$(a_1,\ a_2,\ \cdots,\ a_n)$をすべて求めよ.
北九州市立大学 公立 北九州市立大学 2012年 第1問
以下の問いの空欄$[ア]$~$[コ]$に適する数値,式を記せ.

(1)$1$次不等式$8 |x-1|<3x+4$を満たす$x$の範囲は,$[ア]<x<[イ]$である.
(2)放物線$y=3x^2$を$x$軸方向に$p$,$y$軸方向に$q$だけ平行移動した後に,$x$軸に関して対称移動したところ,$y=-3x^2+18x-25$となった.このとき,$p=[ウ]$,$q=[エ]$である.
(3)$2$次不等式$x^2+2(a+2)x+2a^2+a-6>0$が任意の実数$x$に対して成り立つような定数$a$の値の範囲は,$a<[オ]$,$[カ]<a$である.
(4)$8 \cos^2 \theta-2 \sin \theta-5=0 (0 \leqq \theta \leqq \pi)$を満たす$\theta$は,$[キ]$と$[ク]$である.
(5)$9$冊の異なる本を$4$冊,$3$冊,$2$冊の$3$組に分ける方法は$[ケ]$通りある.また,$3$冊ずつ$3$組に分ける方法は$[コ]$通りある.
京都大学 国立 京都大学 2011年 第4問
$n$は$2$以上の整数であり,$\displaystyle\frac{1}{2} < a_j < 1\ (j=1,\ 2,\ \cdots,\ n)$であるとき,不等式
\[ (1-a_1)(1-a_2)\cdots(1-a_n) > 1- \left( a_1+ \frac{a_2}{2}+ \cdots +\frac{a_n}{2^{n-1}} \right) \]
が成立することを示せ.
スポンサーリンク

「不等式」とは・・・

 まだこのタグの説明は執筆されていません。